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BRANCHING PROCESSES *

Kosto Valov Mitov, Nikolay Mihaylov Yanev

The paper presents several new limit theorems for a class of non-negative alternating
regenerative processes and for the embedded renewal processes with two alternative
states. These results give new method for further investigations of Bellman-Harris
branching processes with state-dependent immigration. The limiting distributions for
these processes are obtained in the critical case with infinite offspring variance.

1. Introduction. It is well known that the renewal and regenerative processes
play an important role in many asymptotic investigations and real applications, see, for
example [14, 15, 6, 16, 8, 3, 2, 4, 13, 7].

The aim of the paper is to present several limit theorems for a class of non-negative
alternating regenerative processes, proved in [12].

The dynamics of these processes on a period of regeneration can be described as fol-
lows: the process stays at zero random time (waiting period) and after that it develops
following some stochastic laws until it hits zero (living period or work time). The in-
vestigation of the regenerative processes with two states needs the investigation of the
corresponding two states renewal processes.

So, at first we investigate the asymptotic behaviour of the spent time associated with
an alternating renewal process. The asymptotic results generalize those obtained by
Dynkin [5], Lamperti [9] and Erickson [6] (see also [16, 4] and [1]). On the other hand,
in alternating case new phenomena are obtained not observed in the classical renewal
processes (see Renewal Theorems 1 and 2).

We apply the results for alternating regenerative processes to prove several new limit
theorems for Bellman-Harris branching processes with state-dependent immigration de-
fined in [10, 11].

2. Definitions. Let on the probability space (2,4, P) be given:

i) A set X ={X;,i=1,2,...} of independent, identically distributed (i.i.d.), positive
random variables (r.v.) with distribution function (d.f.) A(t) = P{X; < t}.

ii) An independent of X set Z = {(T3, (Z;(t) > 0,t € [0,T3), Z;(T;) = 0)),i = 1,2,...}
of i.i.d. pairs of a nonnegative r.v. T; and a measurable stochastic process Z;(t) with
state space (RT,BT), where RT = [0,00), and BT is the Borel o-field. The r.v. T; with
d.f. B(t) = P{T; <t} is called the life-period of the process Z;(t).
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Denote by Y; = X; +T;, i =1,2,... the sequence of i.i.d. non-negative r.v.’s with
d.f. CO(t) = (A* B)(t) = [ A(t — u)B(du).

We will denote by the same letters the d.f. and the corresponding measures on R and
will assume the d.f. right continuous. For the integrals we assume f: =/ bj .

Define the ordinary renewal process N (¢) = max{n : S, <t < Sp41}, where Sy =0,
Snt1 = Sn +Yuq1, n=0,1,2,... . The sequence {S,,S,  }7>, where S}, = S, +
Xnt1, n=0,1,2,... is called an alternating renewal process. In the terms of reliability
theory one can interpret X; as the time for the installation (or repairing time) of i—th
element in some system and 7; as the work time of the same element. So, in the process
{Sn, S}, .1} there are two types of renewal events: S, the beginning of the installation
and S}, ; = Sn + Xp41 the beginning of the work of the (n + 1)—th element.

For the ordinary renewal process the behaviour of the spent life time 7(t) =t — Sy
is well studied (see e.g. [16],[6]). We define now the spent time for the alternating renewal
process { Sy, 5,110

o(t) =t —Sywt1 =t —Snw — Xnw41, t>0.

Note that we obtain the classical renewal process if all X; are identically equal to
zero. In this case o(t) is always non-negative. It is obviously that for the alternating
renewal process, o(t) can take both negative and positive values.

We will use the process o(t) (spent time) to construct an alternating regenerative
process Z(t),t > 0, as follows

_ [ ZNn@sa(o(t)), o(t) =0,
(2.1) 20 ={ g0 olt) <0

The process Z(t) is a classical regenerative process, if we consider only the renewal
epoch {5,}52,, but it can be interpret as an alternating regenerative process, if we
consider also the epoch {S},; = Sn + Xny1}72¢. So, Z(t) can be described as follows:
Z(t) =0forte [O,Xl), Z(t) = Zl(t — Xl) >0 fort e [Xl,Xl +T1),,Z(t) = 0 for
t € [Sn,Sn+ Xnt1), Z(t) = Zpny1(t — Sp — Xpt1) > 0 for t € [S,, + Xpt1, Snt1), and so
on.

3. Basic assumptions. We will suppose that A(0) =0, B(0) =0, and A(¢) and
B(.) are non-lattice d.f. and some of the following basic conditions are satisfied:

(A.1) ma = EX; < 0.

(A.2) EX; = o0, A(t) =1—A(t) ~t7*La(t), t — 00, « € (1,1], and for each h > 0
fized A(t) — A(t —h)=0(1/t), t>0.

(B.1) mp = ET; < oc.

(B.2) ET; =00, B(t)=1-B(t)~tPLp(t), t—o00, B (3,1].

The functions La(.) and Lp(.) are slowly varying at infinity.

(C.0) For x > 0 there exists the limit
Z(t)
M(t)
where M (t) is a positive, non-decreasing function, regularly varying at infinity with ex-
ponent vy > 0, and D(x) is a proper d.f. on R™T.

The following notations ma(t) = f(f A(u)du and mp(t) = fg B(u)du will be used.

4. Limit theorems for the spent work time o(t). If the both means EX; and
ET; are finite the limit behaviour of o(t) can be easily obtained from the classical results
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(see e.g. [16], Sect.11.9). For this reason we assume that at least one of these means is
infinite. Moreover, we will always assume that there exist the limit

A(t)
4.1 lim =< =¢, 0<c< .

The next two theorems contain the basic limit results for o(t).

Renewal Theorem 1. Assume (B.2) and (4.1) with 0 < ¢ < oo. If (A.1) or (A.2) is

fulfilled, then

1
1+¢
(i) If additionally 1/2 < 8 < 1 in (B.2), then for 0 < z <1,

H T
im P{ZY < o) > 0} = Sm”ﬁ/ w A1 —w) P du.
0

t
t—o00 t T

(i) If additionally 8 =1 in (B.2), then for 0 <z < 1,

lim P{o(t) > 0} =

Jim P{% < zlo(t) > 0} = z.

Renewal Theorem 2. Assume (A.2) and (4.1) with ¢ = co. If additionally (B.1) or
(B.2) is fulfilled, then
lim P{o(t) >0} =0.

t—o0

(i) If only (B.1) holds, then for x > 0,

Jim P{o(t) < z|o(t) > 0} =
(i1) If only (B.2) with 1/2 < 3 < 1 holds, then for 0 < z < 1,

/ u P (1 —u)* tdu
0

lim P{@ <zlo(t) >0} = B(a,1-p)

t—o0 t

where B(.,.) is the standard beta function.
(i) If only (B.2) with 8 =1 holds, then for 0 < x <1,

Jim P{% < zlo(t) > 0} = z.

The proofs of these theorems are based on the equations of renewal type for the
distribution of o(t), and some results correspond to the key-renewal theorem in the
infinite mean case.

5. Basic Regeneration Theorem. In this section we formulate a theorem which
describes the limiting behaviour of the process Z(t).

Basic Regeneration Theorem (BRT). Assume conditions (2.1), (4.1) and (C.0).

1) Let (B.2) holds with 1/2 < < 1:
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(i) If additionally (A.1) or (A.2) is fulfilled, and 0 < ¢ < oo, then

) Z(t) c Gi(x)
2\~ _ T\
tlggoP{M(t)_x} 1—|—cJr 1+¢’
- 1
where G1(z) = smﬂ-wﬂ / D(zu=")(1 —u)*Pu=Pdu is a d.f. on RT.
0

(i) If (A.2) is fulfilled and ¢ = oo, then

: Z(t) _

1 1
where Ga(z) = m/o D(zu™)(1 — u)o‘_lu_ﬁdu is a d.f. on RY.

2) Let (B.2) holds with 3 =1, D(0) =0 andy > 0:
(ii) If additionally (A.1) or (A.2) is fulfilled, and 0 < ¢ < oo, then for 0 <z < 1,
M-z
lim p{MSQZLJFL,
t—00 mp(t) 14¢ 1+4c¢
where M ~1(.) is the inverse function of M(.).
(iv) If (A.2) is fulfilled and c = oo, then for 0 <z < 1,
(M~ (Z(1)))

lim P{Z

3) Let (B.1) and (A.2) hold. Then

lim P{Z(t) < |Z(t) > 0} = L/ P{Z(u) < . T1 > u}du.
t—o0 mp Jo

Remark 1. If one assume (A.1) and (B.1) only, then the process Z(t), with renewal
epochs {S,}, is positive recurrent and without any other assumptions by the classical
regenerative theorem (See e.g. [13], Theorem 2.1) there exists

1

lim P{Z(t) <2} = ———
Jim PAZ() <o} =

/ P{Z(u) <x,X1+T1 > u}du.
0

The proof of the BRT is based on the properties of the limiting distributions of
o(t), given in Renewal Theorems 1 and 2, and certain results for the convergence in
distribution.

6. Branching processes with state — dependent immigration. In this section
we assume that on the same probability space (2, .4, P) instead of the set Z are given:

i) The set Z = {(Zi;(t),t > 0), i=1,2,...,5 =1,2,...} of independent, identically
distributed (i.i.d) Bellman-Harris branching processes with p.g.f. of the offspring of one
particle f(s), and the d.f. of the life-length of one particle G(t). We denote by F(t,s)
the p.g.f. of Z;;(t).

ii) The set W = {W,,i = 1,2, ...} of i.i.d., positive, integer valued random variables
(r.v.) with p.g.f. g(s) = E{s"i},s €[0,1].

Define the sequence {Z;(t),t > 0, i = 1,2,...} of i.i.d. branching processes starting
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with positive random number of ancestors W; at time ¢ = 0 as follows
Wi
Zi(t) = ZZij(t); t >0,
j=1

and denote by T; the life period of the process Z;(t), i.e. T; is a r.v. such that Z;(0) =
W; > O,Zz(t) >0 forte [O,Ti), Zz(lfz) =0.
It is clear that the r.v. T;, ¢ = 1,2, ... are independent and identically distributed.
Now, if we use the pairs (Z;(t),T;) in the definition of the process Z(t) then Z(¢) will
be a Bellman-Harris branching process with state-dependent immigration. (Cf. [10,11].)
In what follows we will assume for the set X the conditions (A.1) and (A.2), but
instead of (B.1), (B.2) and (C.0) we will assume the following conditions:
1) For the offspring p.g.f.

(6.1) h(s) = s+ (1 — s)1+5L(1L), s11,6€(0,1],

where L(t) is a s.v.f. at infinity.
2) For the particle life d.f.

(6.2) G(0) =0, G(¢) is non-lattice and r = / zdG(x) < 00,
0
and there exists
. n(l—=G(n))
. | —_— = <d<
(6.3) Jim. =7 (0) d, 0<d< oo,

where as usual h,,(s) is the n—fold iteration of h(s): ho(s) = s, hnt1(s) = h(h,(s)).
In some cases the following condition will also be assumed:

(6.4) 1-G(t) ~t7"Lg(t), t—o00, k>0.
3) For the immigration in the state zero it is assumed one of the following conditions:
(6.5) mw = EW,; = ¢'(1) < o,
or
(6.6) EW; =00, g(s)~1—(1— s)"LB(l—is), 6 € (0,1],

where Lp(t) is a s.v.f. at infinity.

Remark 2. The condition (6.1) determines Z,;(t) as critical Bellman - Harris pro-
cesses with possibly infinite variance. Since the case of finite variance is considered in
[10, 11], then we will suppose now that h”(1—) = oco.

In the theorems which are stated below we will use the following Laplace transforms:

. SN\ —1/8 . —1/5
Dp,(;()\)zl—)\<1+¥) ,D(;()\)zl—)\<1+)\5) L AS0,
and the following p.g.f.:

o) = 1= B8 ) =1 (1=, s o
P
Remark 3. The function p(s) is the unique positive solution of the equation (see
[20])
p(s)10 —rp(s) — (1 — 5)ds = 0, s €[0,1].
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where ¢ € (0,1] is defined by (6.1), 0 < r < oo by (6.2) and 0 < d < oo by (6.3). The
Laplace transforms and the p.g.f. given above arise for the corresponding limit distri-
butions of the process Z;;(t), obtained by Vatutin in [17,18,19,20] under the conditions
(6.1)-(6.4).

Further on, we will always suppose that there exists:

. A®®)
(6.7) tlirgo%fc, 0<c¢< o0
We will use the basic notation Q(t) =1 — F(t,0) = P{Z;;(t) > 0}. Note that in the
case 0 < d < oo one has Q(t) ~ t™1/°Lg(t), where Lg(t) is a s.v.f. as t — oo (see [20]).
Now, we are able to present some limit theorems for the Bellman-Harris branching
process Z(t) with state-dependent immigration. The proofs of these theorems consist of
the examination of the conditions of BRT.

Theorem 6.1. Assume (6.1), (6.2), (6.3) with d =0, (6.5) and (6.7).
1) Let § =1 and ET; = .

(i) If additionally 0 < c¢ < oo, and (A.1) or (A.2) is fulfilled, then
: mp(Q1 ' (Z(1)) cta
lim Py B 2 oL 1
Pael { mp(t) _x} 1+¢’ z€(0.1),
where Q7 (t) is the inverse function of 1/Q(t).

(i) If additionally ¢ = 0o, and (A.2) holds, then

—1
i p{ 2121 (Z10)
mp(t)

2) Let § <1 and mp = ET < 0.
(i) If additionally (A.2) holds, then for x >0,

< x}Z(t) > 0} =z, z€(0,1).

t—oo

(o]
lim P{Z(t) < 2|Z(t) > 0} = i/ P{Zi(u) < 2, T1 > u}du.
t—o0 mpg 0
(i) If additionally (A.1) is satisfied, then for x > 0,

1 o0
A / P{Zi(u) < z,Ty > u}du.
0

lim P{Z(t) <z} =
t—00 ma+mp Mma-+mp

Theorem 6.2. Assume (6.1), (6.2), (6.3) with d =0, (6.6) and (6.7). Let 3 =6/6.
1) If1/2 < B <1 and, either (A.2) with o > 8 or (A.1) is fulfilled, then for x > 0,
(68) Jim P{Z(1Q(1) < x} = sinmf / Dso(zu=%)(1 — u)*PuPdu = G (),

where the d. f. Dsg(x) has a Laplace transform Dsg(A) =1 — (1 — Ds(\))?, A > 0.
2) If (A.2) holds and 1/2 < a < 3 < 1, then for x > 0,

(6.9) Jim P{Z()Q(1) < 2/2(t) > 0)

™

1 o0
=—— | D (1 —w)*tu P du.
B J, Dol 0

3)Let =1 and ET;, = 00 :
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(i) If additionally (A.1) or (A.2) is fulfilled and 0 < ¢ < oo, then for 0 < z < 1,
-1
i PR ZO) _y _ctr
t—00 mp(t) 1+c¢
(i) If additionally (A.2) holds and ¢ = oo, then for 0 <z < 1,
—1
i p{ QL 20)
t—o0 mp (t)

where Q7 *(t) is the inverse function of 1/Q(t).
4) If B> 1, mp = ETh < oo and (A.2) is fulfilled, then for x > 0,

x € (0,1).

< x|Z(t) > 0} =z,

1 [e.¢]
lim P{Z(t) < z|Z(t) >0} = —/ P{Zi(u) < z,Ty > u}du.
t—o00 mpg Jo

5) Let (A.2) holds and 1/2 < o= < 1:
(i) If 0 < ¢ < oo, then for x >0,
Jim P{Z#)Q@#) <z} =
where G1(z) is from (6.8).
(i) If ¢ = oo then the limit (6.9) is fulfilled.

Theorem 6.3. Assume (6.1), (6.2), (6.3) with 0 < d < oo and (6.7).
A) Suppose additionally (6.5), (A.2) and, 0 < § <1 but ETy < co. Then

c+ G1(x)
1+e¢

Y

(6.10) tlim P{Z(t) <z|Z(t) >0} = L/ P{Zi(u) <z,Ti > u}du.
de el mpg 0
B) Suppose additionally (6.6) and denote 8 =0/ :

1) If1/2 < B < 1 and, either (A.1) or (A.2) with 8 < o <1 hold, then

sin 3

(6.11) tli>Holo P{Zt)Q(t) <z} = /0 D, s0(zu%)(1 —u) " PuPdu = Gy (x),

™

where the d.f. D, se(x) has a Laplace transform D,59(\) =1— (1 —D,5(\)?, X > 0.
2) If (A.2) with 1/2 < o < 8 < 1 is fulfilled, then

(6.12) lim P{Z(H)Q(t) < 2| Z(¢) > 0}

1 1
- - D “1/5y(1 — ) LB dw.
B pa) J, Desolen -0

3) Let (A.2) with 1/2 < o= < 1 be fulfilled:
(i) If 0 < ¢ < oo then
. c+ Gl (l‘)
Jim P(Z(0Q() < ) = <N

where G1(x) is given in (6.11).

(i) If ¢ = oo then (6.12) holds.

4) Let (A.2) holds. If 3 > 1 and ETy < oo, then (6.10) is fulfilled.
1/

p(0)

Y

Comment 1. It is not difficult to see that D, s(c0) = 1 —

. 010

Dp,579 x0) = 1 - Q<
38
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This explains why it is not possible to apply the BRT, 2). Thus the case § = 1 and
ET; = oo is an open problem.

Comment 2. Under the conditions of the Theorem Vatutin [19,20] proves that

Jim P{Z;(t) = [Zi(t) > 0} = pp = P{ = n},

where the p.g.f. Es® = f,(s). It is not difficult to see that f,(1) = 1 — p(1)/p(0) =
1 —79/p(0) = P{¢ < 00} < 1, i.e. the limit distribution is improper one. Therefore, it
is not possible to apply the BRT because the condition (C.0) is not fulfilled. So, it is an
open problem to obtain the corresponding limit theorem for the process Z(t).

Theorem 6.4. Assume (6.1), (6.2), (6.3) with d = oo, (6.5), (6.7) and (6.4). Denote
B=r/(149):
1) If1/2 < B < 1 and, either (A.1) or (A.2) with 8 < o <1 is fulfilled, then

Jlim P{Z(t) = n} = P{Zw = n},
where the p.g.f. Bs?= = f5(s).
2) If (A.2) with 1/2 < o < B < 1 is fulfilled, then
(6.13) tlim P{Z(t)=n|Z(t) > 0} =P{Zs = n},
— 00

3) Let (A.2) with 1/2 < o= < 1 holds:

(i) If 0 < ¢ < o0, then

) c+P{Z,=n}

6.14 lim P{Z(t) = =
(6.14) [Jim P{Z(t) = n} i to

(i) If ¢ = oo then (6.13) is fulfilled.
4) If (A.2) holds, 3 > 1 and mp = ET; < 0o, then

tlirgo{Z(t) <z|Z(t) >0} = mLB /000 P{Zi(u) <z,T1 > u}du.

Theorem 6.5. Assume (6.1), (6.2), (6.3) with d = oo, (6.6), (6.7) and (6.4). Denote

Ok
byﬁ_lJrcS

1) If1/2 < B < 1 and, either (A.1) or (A.2) with 8 < o <1 is fulfilled, then
Jlim P{Z(t) =n} = P{Z =n},

where the p.g.f. fso(s) = EsZe =1— (1 — fs5(s))?.
2) If (A.2) with 1/2 < o < B < 1 is fulfilled, then
(6.15) lim P{Z(t) = n|Z(t) > 0} = P{Zs =n},
3) Let (A.2) with 1/2 < o= < 1 holds:
(i) If 0 < ¢ < o0, then
. . c+ P{Z, =n}
tlirgoP{Z(t)fn}f e .
(i) If ¢ = oo, then (6.15) is fulfilled.
4) If (A.2) holds, 3 > 1 and mp = ET} < oo, then
1 o0
lim {Z(t) < 2] Z(t) > 0} = —/ P{Zi(u) < 2,T1 > u}du.
t—oo mpg 0
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I'PAHNYHUN TEOPEMM 3A ITPOLIECY HA B'b3CTAHOBSIBAHE,
PETEHEPUPAIIIN N PA3KJIOHSBAIIIU CE ITPOITECH

Kocto Bwaos Murtos, Hukosain MuxaitsioB SAHeB

B moxmama ca mpencraBeHu HOBU I'DAHNYHN TEOPEMU 33 €OWH KJIAC HEOTPULATEI-
HU, aJITePHUPAINN, PeTeHePUPAIIN IIPOIECH U 33 BJIOXKEHUTE B TAX IPOLECU HA Bb3-
CTAHOBSIBAaHE C OBE AJITEPHATUBHU CHCTOSHUA. 1€3W Pe3yaTaT! OABAT HOB METOX 33
IO-HATATBHIIHO U3CJIEOBaHEe HA IporecuTe HA benMan-Xapuc ¢ uMurpamnms, 3aBuceria
OT CBCTOSHIETO HA IIPOIECA. 33 Te3! IPOLECHU Ca HAMEDEHN IPAHMYHUTE pa3lpene-
JIeHUS B KPUTUUIECKUs ciaydall ¢ 6e3kpaliHa OUCIEPCUSITA HA IMOTOMCTBOTO HA €IHA
JacTHIa.
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