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With the help of the torse-forming vector fields, introduced by Yano and Yamaguchi
and using Leontiev’s quasidekart parallel transfer as well, this paper introduces nets
in which one of the platforms is quasidekart. Symmetric nets are also considered in
the paper. Characteristics of the nets and of spaces, containing such nets, are de-
fined. Two new connectednesses, simply defined by a given net in a three-dimensional
Reimannian space, are introduced. Some transformations of connectednesses, retain-
ing properties of special nets are described.

1. Preliminary. Suppose there is a three-dimensional Reimannian space with
a metric tensor g;s. By T'¥, we note the coefficients of a Levi-Chevita connectedness,
corresponding to the metric tensor g;s.

The independent unit vector fields gi(a = 1,2,3) define a net (11J, v, g) in the space

V3. We find the mutual covectors %i(a =1,2,3) from the equations

(1) gi%s =6, g%ﬁ)l =9

Apart from the covectors %Z we also consider the covectors
(2) v; = girv",
«@ (07
i.e., we use g;s for raising and bringing down indexes.
The following equations hold:

(3) GisV'V* =1,  gisv"0° = cos w
a o a g3 af

where © is the angle between the vector fields v* and gl
(0% «
According to (2) the equations (3) correspondingly take the form

4 vivg =1, vivg, = .
( ) « aé ’ « Bé COS(;UB

The covariant derivative with respect to the connectedness “T'¥, is further noted by
*V
The following derivative equations are obtained in [6]
1 s A 1w & @ g
(5) viv =TV, Vﬂ)s = —=T;Vs.
« o O [
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Assume there is a given connectedness °TX | o # 1 in V3. Transition from the

connectedness lFfs into the connectedness “Ffs is considered as a transformation of 1I’fs
into “T'%,. According to [2, p 128], the tensor of affined deformation has the form

(6) T’LkS = aF']fs - IF’]L?S'

The platform (11),12J) is quasidekart if it is transferred in quasiparallel with each of
the lines. Suppose that (111,12)) is quasidekart. According to Leontiev [1] the derivative
equations (5) have the form

12 , 12 ,
Vvt = Tpv" v’ oy, Vvt =Ty0" v’ 0%,
o kY fkl +€k2 +§k kY 2Tk1 +%“k2 Jrék

ng = BTk?lJ +%“kg +3Tk13) .

Yano [5] and Yamaguchi [4] call the fields ’i)i and gi satisfying (7) torse-forming,.
2. Special nets in V3.
2.1. Let the independent vector fields vi(a = 1,2,3) be given in V3. Taking into
consideration (2), (3) and (5), we find

(8) Vo' = Tvb,
(03 a0
Applying the integrability condition from (5), we obtain
1 i, m v v i
(9) S Ripm 0™ = (Vi Twy + Ty Th) v

After contracting (9) by 0; and taking into account (1) and the equation Rjri' =0
we find

« (03 o
(10) ViiTw + T1iTh = 0.
Thus we proved

Proposition 1. The coefficients of the derivative equations (5) satisfy the equation
(10).

From (9) it easy follows the validity of the

Proposition 2. The space V3 is affined if and only if it contains a net (’tl),g,g),

whose coefficients from the derivative formulae satisfy the condition

Vi;jTk + T[Tk = 0.
« g «

Definition. We call a net (v,v,v) € V5 symmetric if w = w = w.
12’3 12 23 3l

Assume that the net (11), v, g) is symmetric and isogonal, i.e. we have for the net angles
Ww=w=w =w = const.
12 23 31

Then from (5) and (4) we find

B o @ (©)] o o
Tk+Tk+ (Tk+ Tk + Tk + Tk) cosw =0,
o’ B @ ® o B

(11) ® 3
gg-l-(Tk—l-Tk)cosw:O, a# P #0#a.



(The circled indexes are not to be summed)
Thus we proved the

Proposition 3. If the net (111,121,15) € Vs s symmetric and isogonal, the coefficients
from the derivative formulae satisfy the conditions (11).
Let the net (’11], v, g) € Vs is orthogonal. From (11) we find, that the coefficients of the

derivative equations satisfy the equations
8 a @

(12) Te+Tr=0, Tr=0.
@ B @

It is easy provable that if the conditions (12) are satisfied for the isogonal net (11), v, 13)) €

V3, then it is orthogonal as well.
Let consider the tensor

11 2 2 3 3
(13) Qjs = ViVs + VjVs + V; Vs

Assume that the equation
(14) *Viais =
is fulfilled.

From (14) we find

1
(15) 2]‘—‘?5 = 5

According to (6) and (15) we find

am (8iasm + Osim — amais)-

1
Tzlz = §akm(viasm + Visaim — vmais)-

Let in the connectedness 2I'%, the derivative equations have the form
. o . a
(16) Vo' = Pty 2Vit; = — Py
« a O o

From (13), (14) and (16) we establish
1 51 1o 2 52 2 0 3 o3 3 o
Pr(Vivs +v305) + Pr(0i0s + 0305) + Pr(0;0s +005) = 0

o

) ) @ 8 a
and after contracting with v'v® and v'v® we obtain Py = 0 and Py + P = 0 respectively.
a a 3 @ « B8

Consequently, the net (11), ’g, 13)), is orthogonal in the connectedness QFfs.

2.2. Suppose there is a given conforming transformation g;s = €27g;s in V3(gis)-
2.2.1. Let consider the connectedness [3]

(17) STF, = 1Tk 4 6,07 — gis0*, 0 = 00, oF = g0y,
Assume that the net (11), v, g) € V3 is orthogonal. In accordance with (17) we have

3vivk :1 vi,vk‘ + O_i,vk‘ _ gis,vso_k‘
(03 « (03 (03

from where it follows

(18) 3V, 0k = v vk + oot
Ié] [} [} B«

»
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From (18) follows the validity of
Proposition 4. The orthogonal net (11),12),1?{) € Vi is Chebyshevian of the first type
mn lI‘fs if and only if, it is Chebyshevian of the first type in 3I‘fs.
2.2.2. Let consider the connectedness
(19) Tk =11k 4 6F0, + 6%0; — azs0".
According to (1), (13) and (19) we have
Ui4vivk — vilvivk + O'i?}k?)i + Uka'i’l)i
el a a B « «@ Jé]
’UMV,ﬂ)k — vilvivk + ,Uko.svs _ O.k
« (03 (e} (03 (e} (03
from where we obtain the validity of the following

Proposition 5. If two of the conditions below are fulfilled,
1) The field v® is parallelly transferred along the lines (’g) and (v), (a ZB#v#a) in
« Y

the connectedness 'TE ;

2) the field v* is parallelly transferred along the lines (Tﬁ)) and (v), (a £ B # v # a) in
@ v

the connectedness *T% ;

3) conforming transformation vector satisfies the condition oy = /\5S + H%s,
then the third condition is also fulfilled.

Proposition 6. If two of the following conditions are fulfilled:
1) The field v' is geodesic in the connectedness ‘T’ ;
«

2) the field v® is geodesic in the connectedness ‘T ;
(a7

3) oF = M\, then the third condition is also satisfied.
«

2.3. Let the platform (11), 121) be quasidekart. From (2) and (7) we find

1 2 1 2
VkUS =TkVs +TkVs + Agksa vkvs =TrVs +TkVs + Agksa
(20) O T e
vkvs =TkVs +TkVUs + TrVs.
3 31 3 2 3 3

Definition. We shall call the net (’11], v, g) a Kd-a net, if the platform (g, v), (o # B #
¥
v # «) is quasidekart.
The derivative equations for Kd-3 net have the form (7) and (20).

We choose Kd-3 net (11)7 v, g) as a coordinate system.
From (7) we find
(21) 3, =0, T3,=0, k#3.
The opposite is also easy provable, if (11), v, g) is a coordinate system and the coefficients

of the connectedness 'T'%, satisfy (21), then (11), v, 131) is a Kd-3 net. Thus it follows

Proposition 7. A coordinate net ( g) is a Kd-3 net if and only if the coefficients

)

v
2
21

—~c

of connectedness satisfy the conditions (21)
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Assume that we choose the Kd-3 net (11),12),1?3) as a coordinate one. From (7) for the

functions 4 and A we find A =T3;, A =T4%,.
1 2 1 2

Let us consider the connectednesses
(22) 51—‘?5 = 11—"];8 + 5z]'€PS’ 61—‘?5 = 11—"];8 + (556? + 5551m)pm
where p,, is a given vector.

According to [2, pp.149,166] the connectedness °T¥, is semisymmetric, and the con-
nectedness 'T'¥, and ST% are projective in terms of each other.

From (7) and (22) it follows that the fields 11ﬂ and 12ﬂ are torse-forming in the con-

k

nectednesses °T'¥, and °T'%,,

i.e. the net (1{,12),13)) is a Kd-3 net in these connectednesses.
So we obtain the validity of following

Proposition 8. If the net (11),12),13)) is a Kd-3 net in the connectedness ‘T, then it

187

18 Kd-3 net in the connectednesses 5Ffs and 6I’fs too.
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CIIEITNAJIHA MPE>K B TPUMEPHO PUMAHOBO
ITPOCTPAHCTBO

NBan Aranacos Banes

IIpenmer Ha mM3CIEnBaHETO CA HSIKOM CHEIUAIHI MPEXHN B TPUMEPHOTO DPUMAHOBO
TIIPOCTPAHCTBO — M30TOHAJIHU, OPTOTOHAJHN M cuMeTpmuHn. Ha 6a3zara Ha pasrie-
naHuTe oT JlHO m YMarydm TOpCOOGpa3yBaIM BEKTOPHU IIOJETA U BBBEAEHOTO OT
JleoHTHEB KBa3U-IIAPAIIETTHO IPEHACSHE CA ONPENeIeHN XaPaK TEPUCTUKY HA T€3U Mpe-
KU 1 Ha IPOCTPAHCTBATA, ChABPXKAINN TAakKMBAa Mpexu. B paGorara ce m3yuaBar u
npeobpa3yBaHUsI HA CBBP3AHOCTU 3aIIa3BAIl CBONCTBATA HA Te3W Mpexu. BbBeneHu
Cca IB€ HOBU CBBP3aHOCTHU, €IHO3HAYHO OIPeNeseHN OT OAaleHA MpexXa B TPUMEPHO
PUMAHOBO IPOCTPAHCTBO, KATO €A PA3TJIeNaHN U T€XHU XapPaK T€PUCTUKU.
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