MEASURABILITY OF SETS OF PAIRS OF PARALLEL STRAIGHT LINES IN THE GALILEAN PLANE*

Adrijan Varbanov Borisov

The measurable sets of pairs of parallel straight lines and the corresponding invariant densities with respect to the group of the general similitudes and its subgroups are described.

1. Introduction. In the affine version, the Galilean plane Γ_{2} is an affine plane with a special direction which may be taken coincident with the y-axis of the basic affine coordinate system $O x y[7],[8]$, [10], [11]. The affine transformations leaving invariant the special direction $O y$ can be written in the form

$$
\begin{align*}
& x^{\prime}=a_{1}+a_{2} x \tag{1}\\
& y^{\prime}=a_{3}+a_{4} x+a_{5} y
\end{align*}
$$

where $a_{1}, \ldots, a_{5} \in \mathbb{R}$ and $a_{2} a_{5} \neq 0$.
It is easy to verify that the transformations (1) map a line segment and an angle of Γ_{2} into a proportional line segment and a proportional angle with the coefficients of proportionality $\left|a_{2}\right|$ and $\left|a_{2}^{-1} a_{5}\right|$, respectively. Thus they form the group H_{5} of the general similitudes of Γ_{2}. The infinitesimal operators of H_{5} are

$$
X_{1}=\frac{\partial}{\partial x}, X_{2}=x \frac{\partial}{\partial x}, \quad X_{3}=\frac{\partial}{\partial y}, \quad X_{4}=x \frac{\partial}{\partial y}, \quad X_{5}=y \frac{\partial}{\partial y} .
$$

In [1], [2] we proved the following results:
I. The four-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{4}^{1}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right), H_{4}^{2}=\left(X_{1}, X_{2}, X_{3}, X_{5}\right), H_{4}^{3}=\left(X_{2}, X_{3}, X_{4}, X_{5}\right) \\
H_{4}^{4}=\left(X_{1}, X_{3}, X_{4}, \alpha X_{2}+X_{5}\right)
\end{gathered}
$$

II. The three-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
H_{3}^{1}=\left(X_{1}, X_{2}, X_{3}\right), H_{3}^{2}=\left(X_{1}, X_{2}, X_{5}\right), H_{3}^{3}=\left(X_{1}, X_{3}, X_{4}\right), H_{3}^{4}=\left(X_{2}, X_{3}, X_{4}\right),
$$

[^0]\[

$$
\begin{gathered}
H_{3}^{5}=\left(X_{2}, X_{3}, X_{5}\right), H_{3}^{6}=\left(X_{2}, X_{4}, X_{5}\right), H_{3}^{7}=\left(X_{1}, X_{3}, \alpha X_{2}+\beta X_{4}+X_{5}\right), \\
H_{3}^{8}=\left(X_{3}, X_{4}, \alpha X_{1}+X_{5}\right), H_{3}^{9}=\left(X_{3}, X_{4}, \alpha X_{2}+X_{5} \mid \alpha \neq 0\right) \\
H_{3}^{10}=\left(X_{3}, X_{2}+2 X_{5}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right)
\end{gathered}
$$
\]

III. The two-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{2}^{1}=\left(X_{1}, X_{2}\right), H_{2}^{2}=\left(X_{2}, X_{3}\right), H_{2}^{3}=\left(X_{2}, X_{4}\right), H_{2}^{4}=\left(X_{2}, X_{5}\right), \\
H_{2}^{5}=\left(X_{1}, \alpha X_{2}+X_{3}\right), H_{2}^{6}=\left(X_{1}, \alpha X_{2}+X_{5}\right), H_{2}^{7}=\left(X_{3}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right), \\
H_{2}^{8}=\left(X_{3}, \alpha X_{1}+X_{5}\right), H_{2}^{9}=\left(X_{3}, \alpha X_{2}+\beta X_{4}+X_{5} \mid \alpha \neq 0\right), H_{2}^{10}=\left(X_{4}, \alpha X_{2}+X_{3}\right), \\
H_{2}^{11}=\left(X_{4}, \alpha X_{2}+X_{5}\right), H_{2}^{12}=\left(X_{2}+2 X_{5}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right) .
\end{gathered}
$$

IV. The one-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{1}^{1}=\left(X_{1}\right), H_{1}^{2}=\left(X_{2}\right), H_{1}^{3}=\left(X_{3}\right), H_{1}^{4}=\left(X_{4}\right), H_{1}^{5}=\left(X_{5}\right), \\
H_{1}^{6}=\left(\alpha X_{1}+X_{4} \mid \alpha \neq 0\right), H_{1}^{7}=\left(X_{1}+X_{5}\right), H_{1}^{8}=\left(\alpha X_{2}+X_{3} \mid \alpha \neq 0\right), \\
H_{1}^{9}=\left(\alpha X_{2}+X_{5} \mid \alpha \neq 0\right), H_{1}^{10}=\left(\alpha X_{2}+\beta X_{4}+X_{5} \mid \alpha \beta \neq 0\right)
\end{gathered}
$$

Here and everywhere in the text α and β are real constants.
Using some basic concepts of the integral geometry in the sense of M. I. Stoka [9], G. I. Drinfel'd and A. V. Lucenko [4], [5], [6], we find the measurable sets of pairs of parallel straight lines in Γ_{2} with respect to H_{5} and its subgroups.
2. Measurability with respect H_{5}. Let $G_{i}: y=k x+n_{i}, i=1,2$, be two parallel straight lines in Γ_{2}, i.e.

$$
k\left(n_{2}-n_{1}\right) \neq 0
$$

Under the action of (1) the pair $\left(G_{1}, G_{2}\right)\left(k, n_{1}, n_{2}\right)$ is transformed into the pair $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)\left(k^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}\right)$ as

$$
\begin{align*}
& k^{\prime}=a_{2}^{-1}\left(a_{4}+a_{5} k\right), \\
& n_{i}^{\prime}=a_{2}^{-1}\left(a_{2} a_{3}-a_{1} a_{4}-a_{1} a_{5} k+a_{2} a_{5} n_{i}\right), \tag{2}\\
& a_{2} a_{5} \neq 0, \quad i=1,2
\end{align*}
$$

The transformations (2) form the so-called associated group $\overline{H_{5}}$ of $H_{5}[9 ; \mathrm{p} .34]$. The associated group $\overline{H_{5}}$ is isomorphic to H_{5} and the invariant density with respect to H_{5} of the pairs $\left(G_{1}, G_{2}\right)$, if it exists, coincides with the invariant density with respect to $\overline{H_{5}}$ of the points $\left(k, n_{1}, n_{2}\right)$ in the set of parameters [9; p.33]. The infinitestimal operators of $\overline{H_{5}}$ are

$$
\begin{aligned}
& Y_{1}=k Y_{3}, Y_{2}=k Y_{4}, Y_{3}=\frac{\partial}{\partial n_{1}}+\frac{\partial}{\partial n_{2}} \\
& Y_{4}=\frac{\partial}{\partial k}, Y_{5}=k \frac{\partial}{\partial k}+n_{1} \frac{\partial}{\partial n_{1}}+n_{2} \frac{\partial}{\partial n_{2}}
\end{aligned}
$$

From $Y_{4}(k) \neq 0$ we deduce:

Theorem 1. The sets of pairs of parallel straight lines are not measurable with respect to the group H_{5} of the general similitudes and have not measurable subsets.
3. Measurability with respect to the subgroups of H_{5}. The group $\overline{H_{4}^{2}}=$ $\left(Y_{1}, Y_{2}, Y_{3}, Y_{5}\right)$, corresponding to the subgroup $H_{4}^{2}=\left(X_{1}, X_{2}, X_{3}, X_{5}\right)$, is a transitive group and since $Y_{3}(k)=0$ it is measurable. The integral invariant function [9;p.9] $f=f\left(k, n_{1}, n_{2}\right)$, satisfying the system of R.Deltheil [3;p.28], [9;p.11]

$$
Y_{1}(f)=0, Y_{2}(f)+f=0, Y_{3}(f)=0, Y_{5}(f)+3 f=0
$$

has the form

$$
f=\frac{c}{k\left(n_{2}-n_{1}\right)^{2}},
$$

where $c=$ const $\neq 0$. Thus we establish:
Theorem 2. The pairs $\left(G_{1}, G_{2}\right)$ of parallel straight lines $G_{i}: y=k x+n_{i}, i=1,2$, have the invariant with respect to H_{4}^{2} density

$$
d\left(G_{1}, G_{2}\right)=\frac{1}{|k|\left(n_{2}-n_{1}\right)^{2}} d G_{1} \wedge d n_{2}
$$

where $d G_{1}=d k \wedge d n_{1}$ denotes the metric density for the straight lines in Γ_{2}.
Remark 1. Note that the distance between G_{1} and G_{2} is defined by the quantity

$$
\Delta n=\left|n_{2}-n_{1}\right|
$$

and then (3) can be written in the form

$$
d\left(G_{1}, G_{2}\right)=\frac{1}{|k|(\Delta n)^{2}} d G_{1} \wedge d n_{2}
$$

By arguments similar to the ones used above we examine the measurability of the set of pairs of parallel straight lines with respect to all the rest subgroups of H_{5}. We collect the results in the following table:

subgroup	measurable set/subset	expression of the density
1	2	3
H_{4}^{1}	it is not measurable and has not measurable subsets	
H_{4}^{2}	$k \neq 0$	$\|k\|^{-1}\left(n_{2}-n_{1}\right)^{-2} d G_{1} \wedge d n_{2}$
H_{4}^{3}	it is not measurable and has not measurable subsets	
H_{4}^{4}		$\left\|n_{2}-n_{1}\right\|^{\alpha-3} d G_{1} \wedge d n_{2}$
H_{3}^{1}	$n_{2}=n_{1}+\lambda, \lambda k \neq 0$	$\|k\|^{-1} d G_{1}$
H_{3}^{2}	$k \neq 0$	$\|k\|^{-1}\left(n_{2}-n_{1}\right)^{-2} d G_{1} \wedge d n_{2}$

1	2	3
H_{3}^{3}	$n_{2}=n_{1}+\lambda, \lambda \neq 0$	$d G_{1}$
H_{3}^{4}	it is not measurable and has not measurable subsets	
H_{3}^{5}	$k \neq 0$	$\|k\|^{-1}\left(n_{2}-n_{1}\right)^{-2} d G_{1} \wedge d n_{2}$
H_{3}^{6}	it is not measurable and has not measurable subsets	
H_{3}^{7} $\alpha \neq 1$	$k=\frac{1}{1-\alpha}\left[\lambda\left(n_{2}-n_{1}\right)^{1-\alpha}-\beta\right]$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
H_{3}^{7} $\alpha=1$, $\beta=0$	$k=\lambda$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
H_{3}^{7} $\alpha=1$, $\beta \neq 0$	$k=\beta \ln \left\|n_{2}-n_{1}\right\|+\lambda$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
H_{3}^{8}		$\left(n_{2}-n_{1}\right)^{-3} d G_{1} \wedge d n_{2}$
H_{3}^{9}		$\left\|n_{2}-n_{1}\right\|^{\alpha-3} d G_{1} \wedge d n_{2}$
H_{3}^{10}		$\left.\mid n_{2}-n_{1}\right)^{-\frac{5}{2}} d G_{1} \wedge d n_{2}$
H_{2}^{1}	$n_{2}=n_{1}+\lambda, \lambda k \neq 0$	$\|k\|^{-1} d G_{1}$
H_{2}^{2}	$n_{2}=n_{1}+\lambda, \lambda k \neq 0$	$\|k\|^{-1} d G_{1}$
H_{2}^{3}	it is not measurable and has not measurable subsets	
H_{2}^{4}	$n_{2}=\lambda n_{1}, k n_{1} \neq 0, \lambda \neq 1$	$\|k n\|^{-1} d G_{1}$
H_{2}^{5} $\alpha \neq 0$	$n_{2}=n_{1}+\lambda, \lambda k \neq 0$	$\|k\|^{-1} d G_{1}$
H_{2}^{5} $\alpha=0$	it is not measurable and has not measurable subsets	
H_{2}^{6}	$k=\lambda\left(n_{2}-n_{1}\right)^{1-\alpha}$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
H_{2}^{7}	$n_{2}=n_{1}+\lambda, \lambda \neq 0$	$d G_{1}$
H_{2}^{8}	$n_{2}=n_{1}+\lambda k, \lambda k \neq 0$	$\|k\|^{-2} d G_{1}$
H_{2}^{9} $\alpha \neq 1$	$k=\frac{1}{1-\alpha}\left[\lambda\left(n_{2}-n_{1}\right)^{1-\alpha}-\beta\right]$,	$n_{1} \neq n_{2}$
H_{2}^{9} $\alpha=1$, $\beta \neq 0$	$k=\lambda \beta \ln \left\|n_{2}-n_{1}\right\|$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
\begin{tabular}{ll\|}		
\hline
\end{tabular} | | |

1	2	3
$\begin{aligned} & H_{2}^{9} \\ & \alpha=1, \\ & \beta=0 \end{aligned}$	$k=\lambda$	$\left(n_{2}-n_{1}\right)^{-2} d n_{1} \wedge d n_{2}$
H_{2}^{10}	$n_{2}=n_{1}+\lambda, \lambda \neq 0$,	$e^{\alpha n_{1}} d G_{1}$
H_{2}^{11}	$n_{2}=\lambda n_{1}, n_{1} \neq 0, \lambda \neq 1$	$\left\|n_{1}\right\|^{\alpha-2} d G$
1	2	3
H_{2}^{12}	$\begin{aligned} & n_{2}=\lambda n_{1}+\frac{1}{2}(\lambda-1) \alpha k^{2}, \lambda \neq 1, \\ & n_{1}+\frac{1}{2} \alpha k^{2} \neq 0 \\ & \hline \end{aligned}$	$\left\|n_{1}+\frac{1}{2} \alpha k^{2}\right\|^{-\frac{3}{2}} d G_{1}$
H_{1}^{1}	$k=\lambda_{1}, n_{2}=n_{1}+\lambda_{2}, \lambda_{2} \neq 0$	$d n_{1}$
H_{1}^{2}	$n_{1}=\lambda_{1}, n_{2}=\lambda_{2}, k\left(\lambda_{1}-\lambda_{2}\right) \neq 0$	$\|k\|^{-1} d k$
H_{1}^{3}	$k=\lambda_{1}, n_{2}=n_{1}+\lambda_{2}, \lambda_{2} \neq 0$,	$d n_{1}$
H_{1}^{4}	$n_{1}=\lambda_{1}, n_{2}=\lambda_{2}, \lambda_{1} \neq \lambda_{2}$	$d k$
H_{1}^{5}	$n_{1}=\lambda_{1} k, n_{2}=\lambda_{2} k,\left(\lambda_{1}-\lambda_{2}\right) k \neq 0$	$\|k\|^{-1} d k$
H_{1}^{6}	$\begin{aligned} & n_{1}=\frac{1}{2} \alpha k^{2}+\lambda_{1}, n_{2}=\frac{1}{2} \alpha k^{2}+\lambda_{2}, \\ & \lambda_{1} \neq \lambda_{2} \end{aligned}$	$d k$
H_{1}^{7}	$\begin{aligned} & n_{1}=k\left(\lambda_{1}-\ln \|k\|\right), \\ & n_{2}=k\left(\lambda_{2}-\ln \|k\|\right),\left(\lambda_{1}-\lambda_{2}\right) k \neq 0 \end{aligned}$	$\|k\|^{-1} d k$
H_{1}^{8}	$\begin{aligned} & n_{1}=-\frac{1}{\alpha} \ln \|k\|+\lambda_{1}, \\ & n_{2}=-\frac{1}{\alpha} \ln \|k\|+\lambda_{2},\left(\lambda_{1}-\lambda_{2}\right) k \neq 0 \end{aligned}$	$\|k\|^{-1} d k$
$\begin{aligned} & H_{1}^{9} \\ & \alpha \neq 1 \end{aligned}$	$\begin{aligned} & n_{1}=\lambda_{1} k^{\frac{1}{1-\alpha}}, n_{2}=\lambda_{2} k^{\frac{1}{1-\alpha}} \\ & \left(\lambda_{1}-\lambda_{2}\right) k \neq 0 \end{aligned}$	$\|k\|^{-1} d k$
$\begin{aligned} & H_{1}^{9} \\ & \alpha=1 \end{aligned}$	$k=\lambda_{1}, n_{1} \neq 0, n_{2}=\lambda_{2} n_{1}, \lambda_{2} \neq 1$	$\left\|n_{1}\right\|^{-1} d n_{1}$
$\begin{aligned} & H_{1}^{10} \\ & \alpha \neq 1 \end{aligned}$	$\begin{aligned} & n_{1}=\lambda_{1}[(1-\alpha) k+\beta]^{\frac{1}{1-\alpha}} \\ & n_{2}=\lambda_{2}[(1-\alpha) k+\beta]^{\frac{1}{1-\alpha}} \\ & \lambda_{1} \neq \lambda_{2}, \quad(1-\alpha) k+\beta \neq 0 \end{aligned}$	$\|(1-\alpha) k+\beta\|^{-1} d k$
$\begin{aligned} & H_{1}^{10} \\ & \alpha=1 \end{aligned}$	$\begin{aligned} & k=\beta \ln \left\|n_{1}\right\|+\lambda_{1}, n_{1} \neq 0, \\ & n_{2}=\lambda_{2} n_{1}, \lambda_{2} \neq 1 \end{aligned}$	$\left\|n_{1}\right\|^{-1} d n_{1}$

Remark 2. In the table $\lambda, \lambda_{1}, \lambda_{2}, \in R$.

REFERENCES

[1] A. V. Borisov. On the subgroups of the similarity group in the Galilean plane. Compt. rend. Acad. bulg. Sci., 46 (1993), No 5, 19-21.
[2] A. V. Borisov. Subgroups of the group of the general similitudes in the Galilean plane. Math. Balkanica, 13 (1999), No 1-2, 55-84.
[3] R. Deltheil. Probabilités Géométriques. Gauthier-Villars, Paris, 1926.
[4] G. I. Drinfel'd. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., 21 (1949), 47-57 (in Russian).
[5] G. I. Drinfel'd, A. V. Lucenko. On the measure of sets of geometric elements. Vest. Kharkov. Univ., 31 (1964), No 3, 34-41 (in Russian).
[6] A. V. Lucenko. On the measure of sets of geometric elements and their subsets. Ukrain. Geom. Sb., 1 (1965), 39-57 (in Russian).
[7] N. M. Makarova. Galilean-Newtonian geometry I-III. Uč. Zap. Orehovo-Zuev. Ped. Inst., 1 (1955), 83-95; 7 (1957), 7-27; $\mathbf{7}$ (1957), 29-59 (in Russian).
[8] H. Sachs. Ebene Isotrope Geometrie. Vieweg, Braunschweig/Wiesbaden, 1987.
[9] M. I. Stoka. Geometrie Integrala. Ed. Acad. RPR, Bucuresti, 1967.
[10] K. Strubecker. Geometrie in einer isotropen Ebene I-III. Math. Naturwiss. Unterricht, 15 (1962/1963), No 7, 297-306; No 8, 343-351; No 9, 385-394.
[11] I. M. Yaglom. A Simple Non-Euclidean Geometry and its Physical Basic. Springer, Berlin, 1979.

Department of Descriptive Geometry
University of Architecture, Civil Engineering and Geodesy
1, Christo Smirnenski Blvd.
1421 Sofia, Bulgaria
e-mail: adribor_fgs@uacg.acad.bg

ИЗМЕРИМОСТ НА МНОЖЕСТВА ОТ ДВОЙКИ ПАРАЛЕЛНИ ПРАВИ В ГАЛИЛЕЕВАТА РАВНИНА

Адриян Върбанов Борисов

Описани са измеримите множества от двойки паралелни прави и са намерени съответните им инвариантни гъстоти относно групата на общите подобности.

[^0]: *AMS subject classification: 53C65
 Partially supported by BNFSI in Bulgaria under contract MM 809/98

