MATEMATUKA U MATEMATUYECKO OBPA30OBAHWE, 2001
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001
Proceedings of Thirtieth Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 8-11, 2001

ON THE BINARY SELF-DUAL CODES OF LENGTH 70"

Radinka Alexandrova Dontcheva

In this paper we construct 156 new nonequivalent binary [70,35,12] self-dual codes.
They are all possible such codes which have an automorphism of order 23.

1. Introduction. For a binary [70,35,12] self-dual code two possible weight
enumerators exist and they are given in [2]:

(1.1) W(y) =14 28y"2 + (11730 — 26 — 1287)y'* + (150535 — 223 + 896)y*6 + - --
and

(1.2) W(y) =1+ 28y" + (9682 — 23)y™* + (173063 — 220)y "6 + - -

where 3 and v are undetermined parameters.

In 1997 M.Harada [2] found the first example for a binary [70,35,12] self-dual code.
This code has weight enumerator (1.1) for § = 416 and v = 1.

Let C be a [70, 35,12] code via an automorphism o of order 23. By Theoreml of [5]
it follows that o can have only 3 cycles - 1, 9, Q23 and 1 fixed point - {2y. Denote
F,(C)={v € C| vo =v} and E,(C) = {v e C] wt(v|Q) =0 (mod 2), i =1,2,3,4},
where v|Q); is the restriction of v on ;. It is known [3] that C = F,(C) @E,(C) (&
denotes the internal direct sum).

By A;, B; and D; are denoted the coefficients in the weight enumerators of the codes
C, F,(C) and E,(C) respectively. The permutation o of order 23 splits the vectors of
the code C' in orbits of length 1 or 23. Any vector of F,(C) is in an orbit of length 1. A
vector of E,(C) is in an orbit of length 1 if and only if it is the all zero vector. Hence 23
divides D; and A; = B; (mod 23) for i = 12,14, 16,...,58.

The code F,,(C) has the coefficients Boy = 1, B4g = 1, B7p = 1 and any other is equal
to zero.

Suppose C' has the weight enumerator (1.1). From A2 = 0 (mod 23) and A4 =
0 (mod 23) it follows that 8 = 0 (mod 23) and v = 0 (mod 23).

Consider the weight enumerator (1.2). Since A1 = 0 (mod 23) we obtain that
B =0 (mod 23) and then A4 = 22 (mod 23), which contradicts to A14 = 0 (mod 23).
Therefore the code C' can have only the weight enumerator (1.1).

The map 7 : F,(C) — F3 is defined by 7(v|Q;) = v; for some j € Q;, i = 1,2,3.
Hence 7(F,(C)) is a binary [4,2] self-dual code [3]. Let P be the set of even-weight
polynomials in Fy[z]/(2?* —1). It is known that P is a cyclic code of length 23 generated
by x+1. Let E,(C)* be the code E,(C) with the last coordinate deleted. For v € E,(C)*
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we can consider each v|Q; = (vg,v1,...,v22) as a polynomial ¢(v|Q;)(z) = vo + viz +
oo+ wgr?? in P, i = 1,2,3. Then ¢(E,(C)*) is a submodule of the P- module P [3]
and for each u,v € p(E,(C)*) it holds (see [5]):

(1.3) up (z)vr (271 + ug(z)ve(271) + uz(z)vs(x™1) = 0.

2. Results. Suppose C possesses an automorphism o of order 23 with 3 cycles and 1
fixed point in its decomposition. Then the image 7(F,(C)) is a binary [4,2] self-dual code.
There is only one such code: C3 with generator matrix gen(C%) = (1) é (1) (1] ) (see
[4]). Hence we can choose a generator matrix of F,;(C') in the form:

a a 0 a a 0 a a 0
(2~1)X1< a 1); X2< “ 1) 07"X3<a 1),

where a is the all-one vector of length 23 and non-indicated entries are equal to zero.

Note, that over Fy 223 — 1 = (z — 1)hy(x)ha(x), where hy(x) = 21t + 210 4 2% +
20+ a2t + 22+ 1, ho(x) = 2 + 2% + 27 + 25 + 2% + 2 + 1 are irreducible polynomials.
23
hj(x)
and p(E,(C)*)=M1 & My. The set M; = {u € o(E,(C)*) | w; € I;, i = 1,2,3}
is a code over the field I; for j = 1,2. The orthogonal idempotents of I; and I are
e1(x) = 2242 422042042l TP a4 219427425+ 1 and ex(7) = e(z)—e1 (),

23

Hence P = I, ® I, where I; =< > for j = 1,2 is irreducible cyclic code

where e(z) = 2?2 4+ 22! +- - -+ 1z is the identity of P. Denote §;(x) = %

J
Then I; = {0, d%(x) |k =0,1,...,2"" =2} for j = 1,2. The multiplicative order of
d;(x) is equal to 23 x 89 and we can express d1(z) as zo;(z), where the order of o (z)
is 89 and then I; = {0, xkaé(x) | k=0,1,...,22, t = 0,1,...,88} for j = 1,2. The
following transformations lead to an equivalent code [5]:

forj=1,2.

(i) permutation of the first 3 cycles of C;

(ii) multiplication of the j-th coordinate of p(E,(C)*) by x'7, where t; is an integer,
1<t; <22for j=1,2,3;5

(iii) substitution z — 27 for j = 1,2,...22 in p(E,(C)*).

Since dimy, My +dimy, My = 3 we may assume that dimy, M7 = 2. Applying transfor-
mations i), ii) and a multiplication with a nonzero element of I; we obtain the generator
matrix of M7 in the

(2.2) I ( el(z) 0 0{1;(93) )

where t; = 0,1,...,88 for [ =1, 2.

Using transformations i) and iii) we reduce the pairs (af(x), a}'(z)) to 5 nonequiv-
alent; cases: (e1(z), e1(2)), (e1(2), a1(x), (ex(x), (@), (e1(x), 0(x)) and (ex(x),
ai?(z)). Therefore it is sufficient to consider the generator matrix L for M; only for
t1 =0,1,3,5,13,t2 = 0,1,...,88. By the orthogonal condition (1.3) from (2.2) we cal-
culate the elements of the corresponding generator matrix of My. Hence ¢(E,(C)*) has
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Table 1. Codes generated by G4

Code ﬁ tl f,Q Code ﬁ tl f,Q Code ﬁ tl tg
Cr.1 | 10121 0 | O Cro21 | 276 | 1 | 42 || Croa1 | 276 | 13 | 55
Cro2 | 184 | 0 | 1 || Croge | 276 | 1 |47 || Crouz | 276 | 13 | 57
Cros | 184 | 1 | 4 || Croas | 276 | 1 | 49 || Crous | 276 | 13 | 72
Croa | 184 | 1 | 5 || Crooa | 276 | 1 | 71 || Croas | 276 | 13| 85
Cros | 184 | 1 | 26| Crozs | 276 | 3 | 10 || Crous | 138 ] 0 | 5
Croe | 184 | 1 |55 || Croze | 276 | 3 | 27 || Crous | 138 0 | 9
Cror | 184 | 1 | 58| Croar | 276 | 3 | 31 || Crour | 138 | 3 | 73
Cro,8 184 1|66 || Cros | 276 | 3 | 33 || Croag | 138 | 5 )
Cro9 184 3|7 Cro20 | 276 | 3 | 34 || Croa9 | 230 0 | 11
Croa0 | 184 | 3 [ 88| Croso | 276 | 3 |41 || Croso | 230 | 1 | 8
Croa1 | 184 | 5 |26 || Cros1 | 276 | 3 | 75 || Cros:r | 230 | 1 | 10
Cro12 | 184 | 5 |60 || Crosz | 276 | 3 | 85 || Crose | 230 | 1 | 27
Croas | 184 | 5 | 74 || Cross | 276 | 3 | 87 || Cross | 230 | 1 | 28
Cro1s | 184 |13 [ 13 ][ Cross | 276 | 5 | 31 || Cross | 230 | 1 | 44
Croas | 184 |13 [ 88 || Cross | 276 | 5 | 34 || Cross | 230 | 1 | 56
Cro16 | 276 | 0 | 3 || Cross | 276 | 5 | 59 || Crose | 230 | 1 | 57
Croar | 276 | 1 | 2 || Crosr | 276 | 5 | 70 || Crosr | 230 | 1 | 62
Crots | 276 | 1 | 24 |[ Cross | 276 | 5 | 83 | Cross | 230 | 1 | 63
Croao | 276 | 1 |25 || Croso | 276 | 13 | 42 || Croso | 230 | 1 | 68
Cr0,20 | 276 1 131 Cro40 | 276 | 13 | 50 || C7060 | 230 | 1 | 70
Croe1 | 230 | 1 | 77 || Cross | 230 | 5 | 57 || Cronos | 322 | 3 | 61
Crocz | 230 | 1 |85 Cross | 230 | 5 | 65 || Cro06 | 322 | 5 | 29
Croes | 230 | 1 |86 | Cross | 230 | 5 | 66 || Crotor | 322 | 5 | 81
Crocs | 230 | 3 | 9 || Cross | 230 | 13 | 18 || Croos | 322 | 5 | 84
Croes | 230 | 3 |15 || Crosr | 230 | 13| 21 || Croa00 | 322 | 13| 11
Cr066 | 230 3 | 17 || Cros7 | 230 | 13 | 22 || Cro110 | 322 | 13 | 38
Croer | 230 | 3 |18 || Croso | 230 | 13| 31 || Cro1nr | 322 | 13| 54
Cro68 | 230 3 120 | Cro00 | 230 | 13| 33 || Cro112 | 322 | 13 | 69
Cr0,69 230 3 25| Cro1 | 2301336 | Cro113 | 322 13| 79
Crom0 | 230 | 3 | 26 || Crooz | 230 | 13 | 44 || Croua | 424 | 1 | 17
Cromt | 230 | 3 |35 || Croos | 230 | 13 | 73 || Croats | 424 | 1 | 18
Croa | 230 | 3 | 43 || Crooa | 230 [ 13| 75 || Croans | 424 | 3 | 83
Crors | 230 | 3 | 71 || Croos | 322 | 1 |12 | Croaar | 424 | 5 | 73
Croza | 230 | 3 | 77 || Crows | 322 | 1 | 15 || Croans | 460 | 1 | 59
Croms | 230 | 3 | 79 || Crowr | 322 | 1 | 73 || Croare | 368 | 1 | 81
Crome | 230 | 3 | 81| Croos | 322 | 1 | 76 || Croa20 | 368 | 3 | 6
Crorr | 230 | 5 | 9 || Crogo | 322 ] 1 | 82 | Crou21 | 368 | 3 | 86
Croms | 230 | 5 | 22| Cronoo | 322 | 1 | 83 || Croa2z | 368 | 5 | 53
Crozo | 230 | 5 | 27 || Croto1 | 322 | 1 | 84 || Cro23 | 368 | 5 | 72
Croso | 230 | 5 |36 || Cronoz | 322 | 3 | 22 || Crot2a | 368 | 5 | 79
Cr,81 | 230 5 | 41 || Cro103 | 322 | 3 | 54 || Croa25 | 368 | 5 | 85
Crosz | 230 | 5 |55 || Crotoa | 322 | 3 | 60




a generator matrix:
e1(x) 0 oy (z)
(2.3) L'= 0 e1(x ol (
af' (z7h) o) exw)
where t; =0,1,3,5,13,t, =0,1,...,88.
Then the generator matrix of E,(C)* is:

u o T
(2.4) A= o u re |,
/ /
oy w

where o is the all-zero 11 x 23 matrix; the cells u, v, 71 ,ro, r] and 74 are 11 x 23 circu-
lant matrices with first rows the vectors which correspond to polynomials e;(z), ea(z),
oA (x), ¥ (x), o (z71) and of?(2~1), respectively. In this way we prove the following

proposition:

Proposition 2.1. Any binary [70,35,12] self-dual code C with an automorphism of
order 23 C' has a generator matriz of the form:

2.5 G; = Xi i=1,2,3,
A o}

where O is the all zero column of length 33.

A computer test showed that 469 of the all 3 x 445 matrices (2.5) generate a [70, 35, 12]
code C. By transformations i), ii) and iii) we obtain that among them there are only
156 nonequivalent codes. All those have weight enumerator (1.1) with parameters v = 0
and /=1 012, 184, 276, 138, 230, 322, 414, 460 or 368.

The values of ¢1,t2 and the parameter § for the obtained codes are given in the Table
1 and Table 2. It occurred that all codes generated by G3 are equivalent to some of the
codes found by G or Gs.

To prove the nonequivalence of the above codes we use the method described in [6].
The result is that the all 156 codes C' are nonequivalent.

Table 2. Codes generated by Go

Code ﬁ tl tQ Code ﬁ tl tg Code ﬁ tl tg
Cro126 | 184 | 1 | 4 || Croasr | 138 | 0 | 5 || Croaas | 230 | 13 | 60
0707127 184 1 5 070,138 230 1 8 070,149 322 1 13
C?(),128 184 3 7 07()7139 230 1 68 07(),150 322 1 15
0707129 184 | 13 | 53 0707140 230 3 16 070,151 322 1 16
07()7130 276 0 3 07()7141 230 3 17 07(),152 322 1 40
Croast | 276 | 1 | 7 |[ Croaaz | 230 | 3 [ 20 || Crouss | 322 | 3 | 51
Croasz | 276 | 1 | 32 || Croaas | 230 | 3 | 23 |[ Croass | 322 | 5 | 6
Croass | 276 | 3 | 5 || Croaaa | 230 | 3 [ 26 || Crouss | 368 | 5 | 53
C70,134 | 276 | 3 | 10 || Cro,145 | 230 | 3 | 35 || Cro,156 | 460 | 13 | 52
0707135 276 5} 8 070,146 230 3 71
Cro13s | 276 | 5 | 11 || Croaar | 230 | 5 | 51

127



Theorem 2.1. Up to equivalence there exist 156 self-dual [70,35,12] codes with an
automorphism of order 23.

All codes found in Theorem 2.1 are new.
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BBbPXY IBOVYHU CAMOOYAJIHN KOOOBE C I'BJIZKINHA 70

Panunka A. JlouueBa

Koncrpynpann ca sBcmuku nsomurn [70,35,12] camonyansHu kxomose ¢ aBTOMOPGU3BM
ot pen 23. C TOYHOCT IO €KBUBAIEHTHOCT CBINECTBYBAT 156 TakuBa KOmA M BCUYKU
T€ Ca HEM3BECTHU IO CEra.

128



