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A shape of quadrangle is an ordered pair of complex numbers corresponding to an
orbit of quadrangles under the group of the plane direct similarities. We apply the
shape for examination of the properties of inscribed and circumscribed quadrangles,
a quadrangle with mutually perpendicular diagonals and a deltoid. Generalizations
for inscribed polygons also are considered.

Using a complex cross-ratio for studying of the Euclidean plane is a well- known
method considered in many books (see [3], [7] and [8]). This method is developed by
J. A. Lester. She created systematically a complex analytic formalism for examining of
triangle geometry ( see [4], [5] and [6]). The shape of triangle is a fundamental tool in
this formalism. The concept of the shape was extended by R. Artzy in [1]. He intro-
duces a shape of polygon and proves some theorems for shapes of quadrangles. In this
paper, we apply shapes for studing of inscribed quadrangles and polygons, circumscribed
quadrangles and quadrangles with mutually perpendicular diagonals.

First, we recall some basic definitions. Details can be found in [1], [2] and [4]. We
suppose that every point in the Euclidean plane is uniquely determined by a complex
number, i.e. we consider the Gaussian plane. Let a, b, c, d be four noncollinear points
in the Gaussian plane. The shape of the ordered triangle 4abc is the complex number
c − a

b− a
, the shape of the ordered quadrangle abcd is the pair of the complex numbers

[p, q], where p and q are the shapes of the triangles 4abc and 4acd. Similarly, the shape
of ordered convex polygon z1z2 . . . zn is the ordered (n-2)-tuple [p2, p3, . . . , pn−1], where

pj = (zj+1 − z1)(zj − z1)
−1, j = 2, 3, . . . , n − 1.

It is clear that the shape of triangle (quadrangle) is corresponded to the equivalence class
of triangles (quadrangles) with respect to the direct similarities.

Theorem 1. Let abcd be a quadrangle with shape [p, q] and let k, l, m, n be centroids
of 4abc, 4bcd, 4cda, 4dab, respectively. Then the shape of the quadrangle klmn is
equal to [1 − (pq)−1, (1 − q)p(1 − pq)−1].

Proof. Let the shape of the quadrangle klmn be [p′, q′]. We have that k =
a + b + c

3
,

l =
b + c + d

3
, m =

c + d + a

3
, n =

d + a + b

3
. Then

(1) p′ =
m− k

l− k
=

d − b

d − a
and q′ =

n− k

m− k
=

d − c

d− b
.
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From p =
c − a

b− a
and q =

d − a

c − a
, it follows that b = p−1(c−a)+a and d = q(c−a)+a.

Replacing in (1), we obtain p′ = 1− (pq)−1 and q′ = (1− q)p(1− pq)−1. Thus the proof
is completed.

Let abcd be a quadrangle. In the following five propositions, we will always denote
the centroid of 4abc by k, the centroid of 4bcd by l, the centroid of 4cda by m and
the centroid of 4dab by n.

Proposition 1. The quadrangle abcd can be inscribed in a circle if and only if the
quadrangle klmn can be inscribed in a circle.

Proof. A necessary and sufficient condition for a quadrangle abcd with shape [p, q]
to be inscribed in a circle is | arg(1 − p)−1| + | arg(1 − q−1)| = π (see [1], Theorem 7).
Since the shape of klmn is [1− (pq)−1, (1− q)p(1− pq)−1], the quadrangle klmn can be
inscribed in a circle whenever

(2) | arg{1− (1 −
1

pq
)}−1| + | arg{1 −

1 − pq

(1 − q)p
}| = π.

We simplify the left hand side and obtain | arg pq|+ | arg
1 − p−1

1 − q
| = π. From p =

c − a

b − a

and q =
d− a

c − a
, we have | arg pq| + | arg

1 − p−1

1 − q
| = | arg

d− a

b− a
| + | arg

b− c

d− c
| = π. Then

the equality (2) becomes | arg4abd| + | arg4cdb| = π or |∠bad| + |∠dcb| = π, i.e. the
quadrangle klmn can be inscribed in a circle whenever abcd can be inscribed (see Figure
1a).

Figure 1

Proposition 2. A circle can be inscribed in the quadrangle abcd if and only if a
circle can be inscribed in the quadrangle klmn.

Proof. A necessary and sufficient condition for a circle to be inscribed in the quad-
rangle abcd with shape [p, q] is |p−1| + |1 − q| = |1 − p−1| + |q| (see [1], Theorem 8).
Then a circle can be inscribed in klmn if and only if

(3) |
1

1 − (pq)−1
| + |1 −

(1 − q)p

1− pq
| = |1 −

1

1 − (pq)−1
| + |

(1 − q)p

1 − pq
|.

We simplify the equality (3). Then it becomes |q|+ |1−p−1| = |p−1|+ |q−1|, i.e. a circle
can be inscribed in the quadrangle klmn whenever a circle can be inscribed in abcd.
Q.E.D.
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Similarly, it is nearly to prove the following proposition:

Proposition 3. The quadrangle abcd is
(i) a trapezoid if and only if the quadrangle klmn is a trapezoid,
(ii) a parallelogram ( a rhombus, a rectangle, a square) if and only if the quadrangle
klmn is a parallelogram ( a rhombus, a rectangle, a square).

Theorem 2. Let abcd be a convex quadrangle with shape [p, q]. Its diagonals are
perpendicular if and only if p−1 − q is pure imaginary.

Proof. The diagonals of the quadrangle abcd are perpendicular whenever
d− b

a− c
is

pure imaginary. Since b = p−1(c − a) + a and d = q(c − a) + a (see Theorem 1) we

obtain
d − b

a − c
= p−1 − q. This completes the proof.

By this Theorem and by Theorem 7 from [1] we observe that the diagonals ac and bd

of a quadrangle abcd with shape [p, q] are perpendicular chords in a circle if and only if
the following two conditions are satisfied:
(i) |arg(1 − p)−1| + |arg(1 − q−1)| = π,

(ii) p−1 − q is pure imaginary.

Theorem 3. A convex quadrangle abcd with shape [p, q] is a deltoid if and only if
p−1 = q.

Proof. Let s be a midpoint of db. Then a quadrangle abcd is a deltoid whenever
its diagonals are perpendicular and a, c , s are collinear, i.e. p−1 − q is imaginary and
a − s

c − s
is real. Hence,

(4)
a − s

c − s
=

2a − (d + b)

2c − (d + b)
.

From Theorem 1 we have b = p−1(c− a) + a and d = q(c− a) + a. Replacing in (4), we

obtain
a − s

c − s
=

p−1 + q

p−1 + q − 2
, i.e.

a − s

c − s
is real whenever p−1 + q is real. Hence, abcd is

deltoid whenever p−1 − q is imaginary and p−1 + q is real. But p−1 − q is imaginary if
only if

(5) p−1 − q = q − p−1

and p−1 + q is real if only if

(6) p−1 + q = p−1 + q.

From equations (5) and (6) we obtain p−1 = q.

Conversely, let p−1 = q, i.e. pq = 1. From 4abd =
a − d

a − b
=

a− c

a − b
.
a − d

a − c
= pq it follows

that |4abd| = |pq| = |pq| = 1. Since

4cdb =
c − b

c − d
=

c − a

c − d
.
c − b

c − a
= 4cda.4cab = (1 − q)−1.(1 − p−1),

then |4cdb| = |(1−q)−1|.|(1−p−1)| = |1 − q|
−1

.|1−q| = |1 − q|
−1

.|1−q| = 1. This means
that both triangles 4abd and 4cdb are isosceles with apeces at a and c, respectively.
Then the quadrangle abcd is a deltoid. Q.E.D.

Proposition 4. The diagonals of the quadrangle abcd are perpendicular if and only
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if the diagonals of klmn are perpendicular.

Proof. From Theorem 2 the diagonals of abcd with shape [p, q] are perpendicular
whenever p−1−q is pure imaginary. The shape of klmn is [1−(pq)−1, (1−q)p(1−pq)−1].
Thus, the diagonals of klmn are perpendicular if and only if the number

(7)
1

1 − (pq)−1
−

(1 − q)p

1 − pq

is pure imaginary. We simplify (7) and get
q

q − p−1
−

q − 1

q − p−1
=

1

q − p−1
. Hence the

expression (7) is pure imaginary whenever p−1 − q is pure imaginary. Q.E.D.

Proposition 5. A convex quadrangle abcd is a deltoid (|a − b| = |a − d| and
(|c − b| = |c − d|) if only if the quadrangle lmnk is a deltoid.

Proof. The quadrangle lmnk with shape [p′, q′] is a deltoid if and only if p′−1 = q′.

From the proof of Theorem 1., we get p′ =
l− n

l−m
=

c − a

b− a
= p and q′ =

l− k

l− n
=

d − a

c − a
(see Figure 2). Consequently, the quadrangle lmnk is a deltoid if and only if p−1 = q

and this completes the proof.

Figure 2

From equations (1), it follows that the shape of klmn is equal to the shape of a
quadrangle dabc, i.e. the quadrangles klmn and dabc are similar and have the same
orientation. Hence, all previous propositions are particular cases of Theorem 1.

Proposition 6. Let abcd be a quadrangle inscribed in a circle with shape [p, q]. Then
the ordered quadrangle with vertices in the orthocentres of the triangles 4abc, 4bcd,

4cda and 4dab has a shape [1− (pq)−1, (1− q)p(1− pq)−1] and it can be also inscribed
in a circle.

Proof. Let h1 be a orthocentre of the triangle 4abc,h2 of 4bcd,h3 of 4cda

and h4 of 4dab (see Figure 1b). Let o be a circumcentre of abcd. Then we have the
equalities h1 = a+b+ c− 2.o, h2 = b+ c+d− 2.o, h3 = c+d+a− 2.o, h4 = d+a+
b− 2.o. The shape of the ordered quadrangle h1h2h3h4 is [(h3 −h1)(h2 −h1)−1, (h4 −
h1)(h3 − h1)−1]. Replacing, we obtain that (h3 − h1)(h2 − h1)−1 = (d − b)(d − a)−1

and (h4 − h1)(h3 − h1)−1 = (d− c)(d−b)−1. From p = 4abc and q = 4acd, it follows
that a − b = p−1(a − c) and a − d = q(a − c). Subtracting the last equalities we have
that d − b = (p−1 − q)(a − c) whence we obtain (d − b)(d − a)−1 = 1 − (pq)−1. Since
4cda = (1− q)−1 then d− c = (1− q)(a− c) and (d− c)(d−b)−1 = (1− q)p(1− pq)−1.

The second assertion follows from Theorem 7 in [1] for the ordered quadrangle dabc

with shape [1 − (pq)−1, (1 − q)p(1 − pq)−1].
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Corollary 6.1. Let abcd be a quadrangle inscribed in a circle. Then a circle can
be inscribed in the ordered quadrangle with vertices in the orthocentres of the triangles
4abc, 4bcd, 4cda and 4dab if and only if a circle can be inscribed in the quadrangle
abcd.

Proof. Let [p, q] be a shape of the ordered quadrangle dabc. From Proposition 6
it follows that the ordered quadrangle with vertices in the orthocentres of the triangles
4abc, 4bcd, 4cda and 4dab and the quadrangle dabc have the same shapes. Using
Theorem 8 from [1] we have that |p−1| + |1− q| = |1− p−1| + |q| and this completes the
proof.

Corollary 6.2. Let abcd be a quadrangle inscribed in a circle. Then the ordered
quadrangle with vertices in the orthocentres of the triangles 4abc, 4bcd, 4cda and
4dab is a trapezoid if and only if the quadrangle abcd is a trapezoid.

Proof. Let [p, q] be the shape of the ordered quadrangle abcd.
Then from [1, Theorem 6] it follows that abcd is a trapezoid if and only if p = r(1−q)−1

for some nonzero real r such that sgn r = sgn (Im p). Since the ordered quadrangle
with vertices in the orthocentres of the triangles 4abc, 4bcd, 4cda and 4dab and
the quadrangle dabc have the same shapes, the quadrangle of the orthocenters is also
trapezoid.

Corollary 6.3. Let abcd be a quadrangle inscribed in a circle. Then the ordered
quadrangle with vertices in the centroids of the triangles 4abc, 4bcd, 4cda and 4dab

and the ordered quadrangle with vertices in the orthocentres of the same triangles are
similar and have the same orientation.

The proof follows from Theorem 1 and Proposition 6.

Theorem 4. An ordered n-gon (z1, . . . , zn) with shape [p2, . . . , pn−1] can be inscribed
in a circle if and only if

|arg(1 − p2p3 . . . pj)
−1| + |arg(1 − p−1

j+1
)| = π for j = 2, . . . , n − 2.

Proof. Set
∏j

i=2
pi = Qj , then Qj = (zj+1 − z1)(z2 − z1)

−1. An ordered n-gon
(z1, . . . , zn) can be inscribed in a circle if and only if the ordered quadrangles (z1, z2,

zj+1, zj+2) for j = 2, . . . , n − 2 can be inscribed in a circle. Using Theorem 7 from [1]
we obtain the necessary and sufficient conditions

|arg(1 − (zj+1 − z1)(z2 − z1))
−1| + |arg(1 − p−1

j+1
)| = π, i.e.

|arg(1 − p2p3 . . . pj)
−1| + |arg(1 − p−1

j+1
)| = π for j = 2, . . . , n − 2. Q.E.D.

Theorem 5. Let (z1, . . . , zn) be an n-gon. Let m1,m2, . . . ,mn be the centroids of
the ordered (n-1) - gons (z1, . . . , zn−1); (z2, . . . , zn); . . . ; (zn, z1, . . . , zn−2), respectively.
Then
(i) the n-gon (m1,m2, . . . ,mn) is convex if and only if the n-gon (z1, . . . , zn) is convex,
(ii) the n-gon (m1,m2, . . . ,mn) is regular if and only if the n-gon (z1, . . . , zn) is regular,
(iii) the n-gon (m1, m2, . . . , mn) is inscribed in a circle if and only if the n-gon
(z1, . . . , zn) is inscribed in a circle.

Proof. From m1 =
z1 + . . . + zn−1

n − 1
, m2 =

z2 + . . . + zn

n − 1
, . . . ,
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mk =
zk + . . . + zn + z1 + . . . + zk−2

n − 1
, . . . , mn =

zn + z1 + . . . + zn−2

n − 1
we obtain that

the shape of the n-gon (m1,m2, . . . ,mn) is the ordered (n-2)-tuple

[(m3−m1)(m2−m1)
−1, . . . , (mk+1−m1)(mk−m1)

−1, . . . , (mn−m1)(mn−1−m1)
−1] =

= [(zn − z2) (zn − z1)
−1, . . . , (zn − zk) (zn − zk−1)

−1, . . . , (zn − zn−1) (zn −zn−2)
−1]

which is the shape of the n-gon (zn, z1, . . . , zn−1). Then the first assertion follows from
[1, Theorem 3 ], the second assertion follows from [1, Theorem 5] and the third assertion
follows from the above Theorem 4 .
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