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In this paper we investigate the finite deformations of two drops due to electric field.
The fluids are homogenous, incompressible and Newtonian.

Reynolds’ number is assumed small enough to investigate the problem in quasis-
teady Stokes’ approximation. It is also supposed that the initial form of the drops
are spherical, but could be with different radii and different fluid phases.

The electric and hydrodynamic problems are separated and the electric one has in-
fluence on the hydrodynamic with the boundary conditions. The Maxwell’s equations
are turned to Laplace’s equations, and together with Stokes’ equations are solved by
semianalytical-seminumerical method. We use boundary-integral type of these equa-
tions to solve them by the method of boundary elements. The kinematics condition
gives the new form to the particles.

The results obtained indicate that interactions between two and three fluid phases
due to electric field lead to deformations of the drops. Parametrical analysis of the
deformations of some dimensionless parameters of the problem has been given graph-
ically.

1. Introduction. Basic ideas for investigation of the matter of deformations of fluid
particles had been presented for first time by Taylor, G. I. [15]. Taylor, D. T. & Acrivos,
A. [18] prove that in uniform flow in Stokes approximation, an initially spherical particle
remains spherical without any deformations.

Chervenivanova, E. & Zapryanov, Z. [4] obtain small deformations of drop moving
with a uniform velocity in spherical container, full with viscous fluid. Although the flow
is uniform, there are deformations of the drop because it is in a container which causes
the deformations.

The problems of single drop subjected in viscous flow, are in the basis for solving
problems of compound drops (drop in drop), drop near to a plane wall or two separated
drops.

Small deformations of two fluid drops are presented for first time in [3]. They obtain
deformations of two fluid droplets, drop and bubble and drop and rigid particle in uniform
flow. A parametric analysis of the small deformations relative to the distance between
drops and the ration of viscosities of the different phases. “Dimple” formation is on of
the basic results of the paper.

The influence of the electric field on a water drop has been investigated experimen-
tally in [8] and [20]. The critical value of dimensionless parameter (E∗) after which the
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drop breaks up was found. In [1] and [17] was observed drop’s break up with conical tips.
Ramos & Castellanos [12] present theoretical result for the influence of the coefficients
of permittivity and conductivity on the conical tips formation. Torza, Cox & Mason [19]
by experiment find another model of breaking up drop, which is divided into two spher-
ical parts connected with thin “throat”. Sherwood [13] using the method of boundary
elements solves numerically the problem of fluid particle deformation under the influence
of electric field.

The form that two equal fluid drops achieved in presence of electric field give by
experiment O’Konski & Thacker [9]. Taylor G. I. shows that due to the same electric
field but different parameters of the fluid phases (conductivities, permittivities) there are
deformations of the interfaces based on electrostatic charge. Taylor, G. I. [16] Brazier-
Smith [2], investigate deformations and stability of the couple of water drops with equal
radii due to uniform electric field. Sozou [14] using bipolar co-ordinate system presents
semianalytical decision for velocities in and out of the drops, presuming keeping of the
spherical form.

2. Formulation of the problem. The problem for defining the finite deformations
of two fluid drops, due to the electric field, is separated into two problems — electrostatic
and hydrodynamic.

The drops on Figure 2.1 are compounded of fluid 2 with viscosity µ2, conductivity
σ2, permittivity ε2 and fluid 3 with viscosity µ3, conductivity σ3, permittivity ε3. The
electric field that acts on the axis connecting the centres of the drops is with intensity E0.
Under its influence the interfaces of the drops deform. The initial form of fluid drops is
spherical with undistorted radius R1 of the first sphere and undistorted radius R2 of the
second one. With S2 is marked the interface between phase 1 and phase 3, and with S1

– the interface between phase 1 and phase 2. The interfacial tensions over S1 and S2 are
γ1 and γ2 respectively. The fluids 1, 2 and 3 are situated in Ω1, Ω2 and Ω3 respectively,
while Ω1 is infinite area outside the drop (Fig. 2.1).

We solve the problem in quasisteady approximation, by using the short form of
Maxwell’s equations (Laplace’s equations) and Stoke’s equations. In each point the elec-
tric potential and the velocity of the flow in each moment is governed by the following

Fig. 2.1. Scheme of two drops
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equations:

— Laplace’s equations:

(2.1) ∆ϕk = 0 (k = 1, 2, 3)

— discontinuity equations:

(2.2)
∂uk

i

∂xi

= 0 (i, k = 1, 2, 3)

— Stokes’ equations:

(2.3)
∂σk

ij

∂xj

= 0

where σk
ij is stress tensor:

σk
ij = −pkδij + µk

(

∂uk
i

∂xj

+
∂uk

j

∂xi

)

.

The index k = 1 when x ∈ Ω1, k=2 for x ∈ Ω2 and k = 3 x ∈ Ω3, while pk is the
hydrodynamic pressure of the respective fluid. The electric potential in the three phases
must satisfy the following boundary conditions:

(2.1.a) ϕ1 (x0) → E0.x
1

0
|x0| → ∞

(2.1.b) ϕ1 (x0) = ϕ3 (x0) x0 ∈ S2

(2.1.c) ϕ1 (x0) = ϕ2 (x0) x0 ∈ S1

(2.1.d) σ1

∂ϕ1

∂n
(x0) = σ3

∂ϕ3

∂n
(x0) x0 ∈ S2

(2.1.e) σ1

∂ϕ1

∂n
(x0) = σ2

∂ϕ2

∂n
(x0) x0 ∈ S1

where E0 is the intensity of the electric filed, x1

0
is x-component in Decart co-ordinate

system Oxyz of the vector x0 and σ1, σ2, σ3 are the electric conductivity of the respective

fluids, and
∂

∂n
is normal derivative to the surface, pointed out of the respective domain.

The flow field must be governed by the following boundary conditions:

(2.3.a) u1

i (x0) → 0 |x0| → ∞

(2.3.b) u1

i (x0) = u2

i (x0) x0 ∈ S1

(2.3.c)
σ1

ij (x0) nj (x0) − σ2

ij (x0) nj (x0) =

= γ1ni

∂nj

∂xj

−
(

τ1

ij (x0) nj (x0) − τ2

ij (x0) nj (x0)
)

x0 ∈ S1

(2.3.d) u1

i (x0) = u3

i (x0) x0 ∈ S2

(2.3.e)
σ1

ij (x0) nj (x0) − σ3

ij (x0) nj (x0) =

= γ2ni

∂nj

∂xj

−
(

τ1

ij (x0) nj (x0) − τ3

ij (x0) nj (x0)
)

x0 ∈ S2

Here n is the single outer normal to the interface S1 or S2, τk
ij = −

εk

4π

(

(

Ek
)2

2
δij − Ek

i Ek
j

)
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is the Maxwell’s electric stress tensor for the respective phases (k = 1, 2, 3). Its values
are determined by the results of the electric problem (2.5) with boundary conditions
(2.1.a−e) and equations Ek = −∇ϕk. Let us assume that S1 and S2 are Lyapunov’s
surfaces. The decision of (2.3) with boundary conditions (2.3.a−e) gives us the velocity
at each moment in every point of S1 and S2. The deformation of the interfaces is de-
termined in each moment by the normal component of the velocity and the kinematic
condition:

(2.4)
dxs

dt
= ni (ui.ni) = ni.un

Here xs is a point of the respective surface S1 or S2, while un is the normal component
of the velocity in this point.

Following [6] and [10] we turn the system (2.1)–(2.3) with boundary conditions (2.1.a)–
(2.1.e) and (2.3.a)–(2.3.e) to integral system and the following dimensionless parameters
are included:

Eγ =
ε1E

2

0
R1

γ2

− the relation between the electric and capillary forces;

µ12 =
µ1

µ2

, µ13 =
µ1

µ3

− the relation of the viscousities of the different neighbouring phases;

ε21 =
ε2

ε1

, ε31 =
ε3

ε1

− t he relation of the electric permittivity of the different neighbour-

ing phases;

σ12 =
σ1

σ2

, σ13 =
σ1

σ3

− the relation of the electric conductivity of the different neighbour-

ing phases.

γ12 =
γ1

γ2

− the relation of the coefficient of interface tension of the two surfaces of the

drops;

R12 =
R1

R2

− the relation of the radii of the two drops.

3. Algorithm for determination of deformations of two drops due to electric

field. On each time step of the algorithm, first we solve the electrostatic problem which
has influence on the hydrodynamic one by the way of Maxwell’s electric stress tensor.
On its turn, the solving of the hydrodynamic problem gives us velocities of the fluids in
the different phases. Using the kinematic condition for the normal velocity components
on the fluid surfaces, we get their deformation. With the new form (changed boundary
conditions) we solve once again the electrostatic problem and after that the hydrodynamic
one, as the number of time steps determines how many times this procedure will be done.
We assume that the form reach the equilibrium when the normal component of the
velocity becomes less than the preliminary set minimum at every point of the interfaces.
Another criteria for end of the procedure is when the normal component becomes more
than the initially set number; then we consider drop’s break up.

The main steps of the algorithm followed are:
— change of the co-ordinate system from Decart’s to cylindrical, in order to transform

the boundary integrals to one-dimensional;
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— introduction of boundary elements over the boundaries of the domains – arcs of
circles;

— introduction of local polar co-ordinate system on each boundary element;
— calculation of the integrals of the single- and double-layer over each boundary

element;
— subtraction of the integrals singularities;
— calculation of the velocity on the interfaces;
— determination of the drops form from the kinematic condition.
For determination of the drops form in each time-step, we use the kinematic condition

of the following type:
xnew

s = xs + ni (ui.ni) .dt where dt is a preliminary set time-step.
For the calculations a project in Code Warrior C has been conducted, as the main

results have been obtained through Power Mac 200/6400 in the Laboratory to the De-
partment of Mechanics of Continua at the FMI of the Sofia University “St. Kl. Ohridski”.

4. Result. The algorithm for obtaining the finite deformations of two drops due
to electric field was tested for a single drop in presence of electric field and had a good
agreement with the results of Sherwood [13].

The deformation of fluid interfaces when they are with equal radii does not depend
essentially from the distance between drops in low intensities Eγ = 0.4 of the electric
field. The initial distance between the centers of the drops on Fig. 1 is 2.1 R1, on Fig. 2
is 2.5 R1, on Fig. 3 is 3.5R1 with µ12 = 0.50, µ13 = 1.50, Eγ = 0.4, ε21 = 2.0, R12 = 1.0,
ε31 = 3.0, σ12 = 10.0, σ13 = 15.0, dt = 0.01, γ12 = 1.0.

Fig. 1 Fig. 2 Fig. 3

When we increase the intensity of the electric field, the form reached by the first drop
is elongating, till the second one retains almost spherical. On Fig. 4 Eγ = 1.0, on Fig. 5
Eγ = 2.0, on Fig. 6 Eγ = 5.0 with µ12 = 0.50, ε21 = 2.0, µ13 = 1.5, R12 = 1.0, ε31 = 3.0,
σ12 = 10.0, σ13 = 15.0, dt = 0.01, γ12 = 1.0.

Fig. 4 Fig. 5 Fig. 6

The ratio between the radii of the two drops causes different pictures of deformation
as shown on Figs 7, 8, 9. On Fig. 7 R12 = 0.5, on Fig. 8 R12 = 1.25, on Fig. 9
R12 = 1.49 with µ12 = 0.5, Eγ = 0.5, µ13 = 2.0, ε21 = 2.0, ε31 = 3.0, σ12 = 10.0,
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σ13 = 15.0, dt = 0.01, γ12 = 1.0. The change of ratio causes increase of influence of the
initially bigger drop to the smaller.

Fig. 7 Fig. 8 Fig. 9

The problem for the finite deformations of two drops due to electric field has ten
dimensionless parameters each of which has an influence on the process, so further results
should be present in recent papers.
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