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DUE TO ELECTRIC FIELD

Iavor Varbanov Hristov, Zapryan Dimitrov Zapryanov

The finite deformations of compound drop containing another drop due to electric
field are obtained. The fluids are homogenous, incompressible and Newtonian. The
cases of concentric and eccentric particles are investigated together.

The problem is investigated in quasisteady Stokes’ approximation and the initial
form of the drops is spherical.

The electric and hydrodynamic problems are separated and the electric one has
influence on the hydrodynamic with the Maxwell’s stress tensor in the boundary con-
ditions. The Maxwell’s equations are turned to Laplace’s equations and together
with Stokes’ equations are solved with semianalytical-seminumerical method includ-
ing boundary elements. The kinematic condition is used to obtain the new form to
the particles.

The results obtained show that due to electric field there are deformations of
the inner and the outer drop. Parametrical analysis of the deformations of some
dimensionless parameters of the problem is given graphically.

1. Introduction. The first investigations of compound drops had been made by
Chambers & Kopac (1937) and had to do with the processes of coalescence of live cells
and drops from different oils.

The compound multiple drops according to [5] are divided into three main types: A,
B and C. A type contains one large internal drop (bubble), type B contains several small
internal drops, and type C globules entrap large number of internal drops.

Brunn, P. & Roden, I. [2] come to the conclusion that compound concentric drop set in
uniform flow in Stokes’ approximation, as in the case of single drop, has no deformation.

Chervenivanova, E. & Zapryanov, Z. [4] observe that eccentric compound drop in
uniform flow in Stokes’ approximation shows deformations. The deformations of inner
and outer interfaces are obtained to different values of capillary number and different
initial position of the internal interface related to external. In [14] using the method
of boundary elements investigate analytically and numerically the concentric compound
drop in different shear flows. They come to the conclusion that in that case, despite the
concentricity, the two interfaces are deforming.

Using the Navier-Stokes’ equations and the method of finite elements, Bazlekov, I.,
Shopov P. and Zapryanov, Z. [1] derive the finite deformations of eccentric compound
drop in uniform flow with middle values of Reynold’s number.

The influence of the electric field on a water drop has been investigated experimentally
by Wilson & Taylor [18] They find the critical value of dimensionless parameter (E∗) after
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which the drop breaks up. Taylor [15] improves theoretically this value supposing that
the drop preserves its spherical form until the break up. Taylor & McEwan [16], in
the respective paper observe drop’s break up with conical tips. Ramos & Castellanos
[12] present theoretical result for the influence of the coefficients of permittivity and
conductivity on the conical tips formation. In [17] experimentally was found another
model of breaking up drop, which is divided into two spherical parts connected with thin
“throat”. Sherwood [13] using the method of boundary elements solves numerically the
problem of fluid particle deformation under the influence of electric field.

2. Formulation of the problem. To solve the problem of the finite deformations
of a compound fluid drop, due to the electric field, we divide it into two problems –
electrostatic and hydrodynamic.

Fig. 2.1 Scheme of eccentric compound drop

The drop on Figure 2.1 is two-component, compound of fluid 2 with viscosity µ2,
conductivity σ2, permittivity ε2 and fluid 3 with viscosity µ3, conductivity σ3, permit-
tivity ε3. The electric field that acts on the axis connecting the centres of the drops
is with intensity E0. Under its influence the two interfaces of compound drop deform.
The initial form of compound fluid drop is spherical with undistorted radius R1 of the
external sphere and undistorted radius R2 of the internal one. With S1 is marked the
interface between phase 1 and phase 2, and with S2 – the interface between phase 2 and
phase 3. The interfacial tensions over S1 and S2 are γ1 and γ2, respectively. The fluids
1, 2 and 3 are situated in Ω1, Ω2 and Ω3, respectively, while Ω1 is infinite area outside
the drop (Fig. 2.1).

We solve the problem in quasisteady approximation, by using the short form of
Maxwell’s equations (Laplace’s equations) and Stoke’s equations. In each point the elec-
tric potential and the velocity of the flow in each moment is governed by the following
equations:

— Laplace’s equations:

(2.1) ∆ϕk = 0 (Ω = 1, 2, 3)
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— discontinuity equations:

(2.2)
∂uk

i

∂xi

= 0 (i, k = 1, 2, 3)

— Stoke’s equations:

(2.3)
∂σk

ij

∂xj

= 0

where σk
ij is stress tensor:

σk
ij = −pkδij + µk

(

∂uk
i

∂xj

+
∂uk

j

∂xi

)

.

The index k = 1 when x ∈ Ω1, k = 2 for x ∈ Ω2 and k = 3 for x ∈ Ω3, while pkis the
hydrodynamic pressure of the respective fluid. The electric potential in the three phases
must satisfy the following boundary conditions:

(2.1.a) ϕ1 (x0) → E0.x
1

0
|x0| → ∞

(2.1.b) ϕ2 (x0) = ϕ3 (x0) x0 ∈ S2

(2.1.c) ϕ2 (x0) = ϕ1 (x0) x0 ∈ S1

(2.1.d) σ2

∂ϕ2

∂n
(x0) = σ3

∂ϕ3

∂n
(x0) x0 ∈ S2

(2.1.e) σ2

∂ϕ2

∂n
(x0) = σ1

∂ϕ1

∂n
(x0) x0 ∈ S1

where E0 is the intensity of the electric filed, x1

0
is x-component in Decart co-ordinate

system Oxyz of the vector x0 and σ1, σ2, σ3 are the electric conductivity of the respective

fluids, and
∂

∂n
is normal derivation n to the surface, pointed out of the respective domain.

The flow field must be governed by the following boundary conditions:

(2.3.a) u1

i (x0) → 0 |x0| → ∞

(2.3.b) u1

i (x0) = u2

i (x0) x0 ∈ S1

(2.3.c)
σ1

ij (x0) nj (x0) − σ2

ij (x0) nj (x0) =

= γ1ni

∂nj

∂xj

−
(

τ1

ij (x0) nj (x0) − τ2

ij (x0) nj (x0)
)

x0 ∈ S1

(2.3.d) u2

i (x0) = u3

i (x0) x0 ∈ S2

(2.3.e)
σ2

ij (x0) nj (x0) − σ3

ij (x0) nj (x0) =

= γ2ni

∂nj

∂xj

−
(

τ2

ij (x0) nj (x0) − τ3

ij (x0) nj (x0)
)

x0 ∈ S2

Here n is the single outer normal to the interface S1 or S2, τk
ij = −

εk

4π

(

(

Ek
)2

2
δij − Ek

i Ek
j

)

is the Maxwell’s electric stress tensor for the respective phases (k = 1, 2, 3). Its values
are determined by the results of the electric problem (2.5) with boundary conditions
(2.1.a − e) and equations Ek = −∇ϕk. Let us assume that S1 and S2 are Lyapunov’s
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surfaces. The decision of (2.3) with boundary conditions (2.3.a − e) gives us the veloc-
ity at each moment in every point of S1 and S2. The deformation of the interfaces is
determined in each moment by the normal component of the velocity and the kinematic
condition:

(2.4)
dxs

dt
= ni (ui.ni) = ni.un

Here xs is a point of the respective surface S1 or S2, while un is the normal component
of the velocity in this point.

Following Greengard [7] and [10] we get a system of integral equations and the fol-
lowing dimensionless parameters are included:

Eγ =
ε2E

2

0
R1

γ2

− the relation between the electric and capillary forces;

µ21 =
µ2

µ1

, µ32 =
µ3

µ2

− the relation of the viscousities of the different neighbouring phases;

ε21 =
ε2

ε1

, ε32 =
ε3

ε2

− the relation of the electric permittivity of the different neighbour-

ing phases;

σ21 =
σ2

σ1

, σ32 =
σ3

σ2

− the relation of the electric conductivity of the different neighbour-

ing phases.

γ12 =
γ1

γ2

− the relation of the coefficient of interface tension of the two surfaces of the

drops;

R21 =
R2

R1

− the relation of the radii of the two drops.

3. Algorithm for determination of deformations of compound drop due

to electric field. On each time step of the algorithm, first we solve the electrostatic
problem which has influence on the hydrodynamic one by the way of Maxwell’s electric
stress tensor. On its turn, the solving of the hydrodynamic problem gives us velocities of
the fluids in the different phases. Using the kinematic condition for the normal velocity
components on the fluid surfaces, we get their deformation. With the new form (changed
boundary conditions) we solve once again the electrostatic problem and after that the
hydrodynamic one, as the number of time steps determines how many times this proce-
dure will be done. The criteria for the end of procedure is reaching equilibrium form of
the drops or “break up”.

The main steps of the algorithm followed are:
— change of the co-ordinate system from Decart’s to cylindrical, in order to transform

the boundary integrals to one-dimensional;
— introduction of boundary elements over the boundaries of the domains - arcs of

circles;
— introduction of local polar co-ordinate system on each boundary element;
— calculation of the integrals of the single- and double-layer over each boundary

element;
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— subtraction of the integrals’ singularities;

— calculation of the velocity on the interfaces;

— determination of the drops’ form from the kinematic condition.

We use the kinematic condition of the following type:

xnew
s = xs + ni (ui.ni) .dt where dt is a preliminary set time-step.

We assume that the form reaches the equilibrium when the normal component of the
velocity becomes less than the preliminary set minimum at every point of the interfaces.
Another criteria for end of the procedure is when the normal component becomes more
than the initially set number; then we consider drop’s break up.

For the calculations a project in Code Warrior C has been conducted, as the main
results have been obtained through Power Mac 200/6400 in the Laboratory to the De-
partment of Mechanics of Continua at the FMI of the Sofia University “St. Kl. Ohridski”.

4. Results. The algorithm for obtaining the finite deformations of compound drop
due to electric field was tested for a single drop in presence of electric field and had a
good agreement with the results of Sherwood [13].

The deformation of fluid interfaces depends essentially on the position of the inner
drop within the outer drop. When the distance between them is not small the deformation
is very weak compared to the case when they are situated closer.

Fig. 1 Fig. 2 Fig. 3 Fig. 4

The distance between the centers of the drops on Fig. 1 is 0.35 R1, on Fig. 2 is 0.3
R1, on Fig. 3 is 0.15 R1 and on Fig. 4 is 0.14 R1 with µ21 = 1.00, µ32 = 2.00, Eγ = 2.5,
ε21 = 2.5, R21 = 0.6, ε32 = 1.5, σ21 = 20.0, σ32 = 25.0, dt = 0.01, γ12 = 1.0

When we increase the intensity of the electric field, the equilibrium form reached of
the two drops is with growing up deformation, but after the critical value of Eγ = 3.294
break up appears. On Fig. 5 Eγ = 1.5, on Fig. 6 Eγ = 3.20, on Fig. 7 Eγ = 3.294
with µ21 = 1, ε21 = 2.5, µ32 = 2.0, R21 = 0.6, ε32 = 1.5, σ21 = 20, σ32 = 25, dt = 0.01,
γ12 = 1.0.
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Fig. 5 Fig. 6 Fig. 7

The ratio between the permittivities ε21causes different pictures of deformation of
concentric drops as shown on Fig. 8, 9, 10, 11. On fig. 8 ε21 = 0.5, on Fig. 9 ε21 = 1.0,

Fig. 8 Fig. 9 Fig. 10 Fig. 11

on Fig. 10 ε21 = 1.5, on Fig. 11 ε21 = 2.5 with µ21 = 1.5, Eγ = 5.5, µ32 = 2.0,
R21 = 0.5, ε32 = 2.0, σ21 = 20.0, σ32 = 25.0, dt = 0.01, γ12 = 1.0. The change of ratio
causes deformation on the outer interface S1 but also on the inner drop. When the ratio
become bigger than 2.5 the numerical simulation breaks down as predicted by Sherwood
[13].
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