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AN IMPLICIT RUNGE-KUTTA METHOD FOR A CLASS OF

DIFFERENTIAL INCLUSIONS: LOCAL ERROR ESTIMATES
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A multivalued version of an implicit Runge-Kutta method known from the field of
differential equations as the implicit midpoint rule is considered. The method is
applied to a class of differential inclusions. Certain local error estimates are obtained.

Introduction. We consider the initial value problem of finding an absolutely
continuous function x(t) ∈ R

n on the interval [0, T ] satisfying the differential inclusion

dx(t)

dt
∈ co

k⋃

i=1

ai(x(t)) for almost all t ∈ [0, T ], x(0) = x0,(1)

where co means the convex hull and the given functions ai(·) : R
n → R

n, i = 1, 2, . . . , k

are supposed to satisfy the following assumptions:
A(i): ai(·) are twice continuously differentiable, and
A(ii): ai(·) are with linear growth: ‖ai(x)‖ ≤ ϑ(1 + ‖x‖) for some positive ϑ,

where ‖ · ‖ is the Euclidean norm.

For any sequence of k elements (f1, f2, . . . , fk) we use the notation {fi}
k
i=1. Denote

A =

{
{αi}

k
i=1

∣∣∣∣αi ∈ R,
k∑

i=1

αi = 1, αi ≥ 0

}
. The set of all measurable (single-valued)

selections of the mapping t 7→ A, defined on [0, T ] is given by

M[0, T ] =

{
{µi(·)}

k
i=1

∣∣∣∣ µi(·) ∈ L1[0, T ],

k∑

i=1

µi(t) = 1, µi(t) ≥ 0

}
.

Let X [0, T ] denotes the solutions set of (1). Thanks to the conditions A(i) and A(ii) and
the lemma of Filippov in [1] it holds the following

Proposition 1.

X [0, T ] =



x(·)

∣∣x(t) = x0 +

t∫

0

k∑

i=1

µi(s)ai(x(s))ds on [0, T ], {µi(·)}
k
i=1 ∈ M[0, T ]



(2)
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Implicit midpoint rule:For a given integer number j ≥ 0, the initial value x0 of
the problem (1) and h > 0, define the vector x(j+1)h by

x(j+1)h ∈ {xjh + hz|z ∈ Z(h, xjh)} ≡ Gj(h, xjh),(3)

where Z(h, xjh) denotes the solutions set of the implicit inclusion

z ∈

{
k∑

i=1

αiai

(
xjh +

h

2
z

)∣∣∣∣{αi}
k
i=1 ∈ A

}
.(4)

Given an uniform grid 0 = t0 < t1 < . . . < tm = T with stepsize h =
T

m
, we

consider the approximate solution of (1) to be any sequence Xh = (x0, xh, . . . , xmh)
obtained by (3) and (4). The reachable set of (1) at the point t in [0, T ] is R(t) =
{x(t)|x(·) ∈ X [0, T ]}. The reachable set associated with the discretezation (3)-(4) is
Rjh = {x|x = xjh for some Xh}.

The proofs of the next two assertions are standard and will be omitted.

Lemma 1. Suppose f : R → Rn is continuous function satisfying the condition of
linear growth ‖f(x)‖ ≤ ϑ(1 + ‖x‖) for some ϑ > 0. If η > 0 be given, then for ‖x‖ ≤ η

and positive h ≤ h0 <
2

ϑ
, there exists z(h, x) ∈ R

n such that:

z(h, x) = f(x +
h

2
z(h, x)) and ‖z(h, x)‖ ≤

2ϑ

2 − ϑh0
(1 + η).

Proposition 2.Let T > 0 be given. Consider the implicit midpoint rule with h =
T

m
for some integer m > 0. Assume ai(·), i = 1, 2, . . . , k are continuous functions satisfying

the condition of linear growth A(ii), and denote C =
2ϑ

2 − ϑh0
. Then for each {αi}

k
i=1 ∈ A

and h ≤ h0 <
2

ϑ
there exist z(h, xjh) ∈ Z(h, xjh), j = 0, 1 . . . , m − 1 such that

max
j=0,1,...,m−1

‖z(h, xjh)‖ < C(1 + ‖x0‖)e
CT and max

j=0,1,...,m
‖xjh‖ < (1 + ‖x0‖)e

CT − 1.

Let B denotes some closed ball in R
n that contains the values of all exact solutions

in X [0, T ] and the values xjh of all approximate solutions in Xh[0, T ] for h <
2

ϑ
. Via the

assumption A(i) we take advantage of the obvious Lipschitz continuity of the given ai(·)
on B: ‖ai(x) − ai(y)‖ ≤ M1‖x − y‖ for x ∈ B, y ∈ B.

Main result.

Lemma 2.Consider the family of sequences

L(l)[0, T ] =

{{
λ

(l)
i (·)

}k

i=1

∣∣∣∣λ
(l)
i (·) ∈ Cl[0, T ],

k∑

i=1

λ
(l)
i (t) = 1, λ

(l)
i (t) ≥ 0

}
,
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where C l[0, T ], l = 0, 1, 2, . . . is the space of l-times continuously differentiable functions

on [0, T ]. We write C[0, T ] ≡ C0[0, T ], L[0, T ] ≡ L(0)[0, T ], λi(·) ≡ λ
(0)
i (·), etc. Denote

(5) X̃(l)[0, T ] =

x̃(l)(·)|x̃(l)(t) = x0 +

t∫

0

k∑

i=1

λ
(l)
i (s)ai(x̃

(l)(s)) ds on [0, T ], {λ
(l)
i (·)}k

i=1 ∈ L(l)[0, T ]



 ,

R̃(l)(t) =
{
x̃(l)(t)|x̃(l)(·) ∈ X̃(l)[0, T ]

}
.

We claim that, on the assumptions A(i) and A(ii), X̃(l)[0, T ] and R̃(l)(t) are dense subsets
in X [0, T ] and R(t):

X [0, T ] = cl X̃(l)[0, T ] in the uniform metric of C[0, T ],

R(t) = cl R̃(l)(t) in the norm metric of R
n, uniformly in t,

where cl A is the closure of the set A ⊂ R
n.

Proof. Let us first recall the well known statement: for any function µ(·) ∈ L1[0, T ]
and for any ε > 0, there exists τ > 0, such that the Steklov’s mean function λ : [0, T ] → R,
defined by

λ(t) =
1

2τ

t+τ∫

t−τ

ν(s) ds, ν(s) = {µ(s) if t ∈ [0, T ] and 0 if t ∈ R \ [0, T ]}

(see e.g. in [2]) is continuous and ‖µ(·) − λ(·)‖L1
< ε; ‖ · ‖L1

is the norm in L1[0, T ].
Denote by M the maximum of the Lipschitz constant M1 and the upper bounds of ‖ai(·)‖,
i = 1, · · · , k on B. By the chain of inequalities

‖x(t) − x̃(l)(t)‖ =

∥∥∥∥
k∑

i=1

t∫
0

(µi(s)ai(x(s)) − λ
(l)
i (s)ai(x̃

(l)(s))) ds

∥∥∥∥

≤
k∑

i=1

t∫
0

|µi(s) − λ
(l)
i (s)|‖ai(x(s))‖ ds +

k∑
i=1

t∫
0

λ
(l)
i (s)‖ai(x(s)) − ai(x̃

(l)(s))‖ ds

≤ kMε + M
t∫
0

‖x(s) − x̃(l)(s)‖ ds ≤ kMε +
t∫
0

εkM2e

∫
t

0
M dξ

ds ≤ kM(1 + MTeMT )ε

we complete the proof. �

Theorem. If the conditions A(i) and A(ii) are assumed, then for sufficiently small h

the following estimates hold true:

1. For any xh in Rh, there exists a x(h) in R(h) such that ‖x(h) − xh‖ ≤ O(h3),
where O(h3) does not depend on xh;

2. For a given solution x(·) ∈ X [0, T ], there exists xh ∈ Rh such that ‖x(h) − xh‖ =
o(h2), where o(h2) depends on x(·).
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Proof. By applying the Taylor’s formula to the functions ai(·) we obtain

x(h) − xh =

h∫

0

k∑

i=1

[
µi(s)ai(x(s)) − αiai(x0 +

h

2
z(h, x0))

]
ds

=

h∫

0

k∑

i=1

(µi(s) − αi)ai(x0) ds +

h∫

0

k∑

i=1

µi(s)a
′

i(x0)(x(s) − x0)

−

h∫

0

k∑

i=1

αia
′

i(x0)sz(h, x0) ds + O(h3).

The term O(h3) depends on the Lipschitz constant of the solutions of (1), the upper

bound of the second derivatives

∣∣∣∣
∂2ai,r

∂xp∂xq

∣∣∣∣ of the vector components ai,r, r = 1, 2, . . . , n

on B (implied by A(i)), and the upper bound of ‖z(h, x0‖ for sufficiently small h (see
the Proposition 2). Interpolating by xs = xjh + (s − jh)z(h, xjh), and applying the

Gronwall’s inequality, we obtain (M0 =
k∑

i=1

‖a′

i(x0)‖)

‖x(h) − xh‖ ≤ c1(h) + c2(h) + O(h3) + M0e
M0h

h∫

0

(c1(h) + c2(h) + O(h3)) ds,(6)

where

c1(h) =

∥∥∥∥∥∥

k∑

i=1

ai(x0)

h∫

0

(µi(s) − αi) ds

∥∥∥∥∥∥
(7)

c2(h) = ‖z(h, x0)‖
k∑

i=1

‖a′

i(x0)‖

∣∣∣∣∣∣

h∫

0

(µi(s) − αi)s ds

∣∣∣∣∣∣
.(8)

1. Let us fix an element in Rh associated with the sequence {αi}
k
i=1 in A. Hence,

by the sequence of functions {µi(·)}
k
i=1 in M[0, T ] defined on [0, h] by the substitutions

µi(s) = αi, we choose a point x(h) in R(h), for which the inequality (6) implies the
desired estimate.

2. We shall first consider the set X̃ [0, T ]. Let us fix a sequence {λi(·)}
k
i=1 in L[0, T ],

that is equivalent to choose a solution x̃(·) in X̃[0, T ]. Then, we put λi(·) for the functions

µi(·) into equations (7) and (8), and set αi(h) =
1

h

h∫

0

λi(s) ds, i = 1, 2, · · · , k. It is easy
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to check that

∣∣∣∣∣
h∫
0

(s −
h

2
)λi(s) ds

∣∣∣∣∣ ≤
h2

8
, and hence, applying the L’Hopital rule we have

lim
h→0

1

h2

h∫

0

(
s −

h

2

)
λi(s) ds = lim

h→0

1

2h




h∫

0

(
−

1

2

)
λi(s) ds +

h

2
λi(h)





= − lim
h→0

1

4h

h∫

0

λi(s) ds +
1

4
lim
h→0

λi(h) = −
1

4
lim
h→0

λi(h) +
1

4
λi(0) = 0.

As a result we obtain c1(h) = 0 and c2(h) = o(h2). For the latter estimate we make use
of the boundedness of ‖z(h, x0)‖ (see the Proposition 2). Therefore, it follows from (6)

that for a given solution x̃(·) ∈ X̃ [0, T ], the defined sequence {αi(h)}k
i=1 ∈ A determines

a point xh ∈ Rh which satisfies limh→0
1

h2
‖x̃(h)−xh‖ = 0. In the remainder of the proof

we fix an arbitrary x(·) in X [0, T ]. From the Lemma 2 we have that for any ε > 0, there

exists x̃(·) ∈ X̃[0, T ], such that

‖x(h) − xh‖

h2
≤

‖x(h) − x̃(h)‖

h2
+

‖x̃(h) − xh‖

h2
<

ε

h2
+

‖x̃(h) − xh‖

h2

holds for any h in [0, T ]. Hence, by choosing ε = o(h2) we complete the proof. �

To recall, the Hausdorff distance between the sets A and B is haus(A, B) =
max{H(A, B), H(B, A)}, where H(A, B) = sup

x∈A

inf
y∈B

‖y − x‖.

Corollary.On the assumptions A(i) and A(ii) for sufficiently small h it holds

haus(Rh, R(h)) ≤ O(h2).

Proof. It suffices to invoke the substitutions αi(h) =
1

h

h∫

0

µi(s) ds, i = 1, 2, · · · , k to

deduce from (6): for every x(·) ∈ X [0, T ] there exists xh ∈ Rh, such that ‖x(h) − xh‖ ≤
O(h2), where O(h2) does not depend on x(·). On the other hand, from the first statement
of the Theorem it follows H(Rh, R(h)) ≤ O(h3). The last two estimates imply the
claim. �

Remark. The uniformity of the second estimate of the Theorem in respect with the
solutions x(·) in X [0, T ] should be enough to prove o(h2) order of convergence for the
Hausdorff semidistance H(R(h), Rh), which together with H(Rh, R(h)) ≤ O(h3) should
imply haus(Rh, R(h)) = o(h2). But, it can be shown that this uniformity is not available
in general and the estimate of the Hausdorff distance between Rh and R(h) can not be
better than O(h2).
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