AN IMPLICIT RUNGE-KUTTA METHOD FOR A CLASS OF DIFFERENTIAL INCLUSIONS: LOCAL ERROR ESTIMATES

Radostin Petrov Ivanov,

Nedka Velikova Pulova, Vladimir Ivanov Pulov

A multivalued version of an implicit Runge-Kutta method known from the field of differential equations as the implicit midpoint rule is considered. The method is applied to a class of differential inclusions. Certain local error estimates are obtained.

Introduction. We consider the initial value problem of finding an absolutely continuous function $x(t) \in \mathbb{R}^{n}$ on the interval $[0, T]$ satisfying the differential inclusion

$$
\begin{equation*}
\frac{d x(t)}{d t} \in \operatorname{co} \bigcup_{i=1}^{k} a_{i}(x(t)) \text { for almost all } t \in[0, T], x(0)=x_{0} \tag{1}
\end{equation*}
$$

where co means the convex hull and the given functions $a_{i}(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, i=1,2, \ldots, k$ are supposed to satisfy the following assumptions:

A(i): $\quad a_{i}(\cdot)$ are twice continuously differentiable, and
A(ii): $\quad a_{i}(\cdot)$ are with linear growth: $\left\|a_{i}(x)\right\| \leq \vartheta(1+\|x\|)$ for some positive ϑ, where $\|\cdot\|$ is the Euclidean norm.
For any sequence of k elements $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ we use the notation $\left\{f_{i}\right\}_{i=1}^{k}$. Denote $\mathcal{A}=\left\{\left\{\alpha_{i}\right\}_{i=1}^{k} \mid \alpha_{i} \in R, \sum_{i=1}^{k} \alpha_{i}=1, \alpha_{i} \geq 0\right\}$. The set of all measurable (single-valued) selections of the mapping $t \mapsto \mathcal{A}$, defined on $[0, T]$ is given by

$$
\mathcal{M}[0, T]=\left\{\left\{\mu_{i}(\cdot)\right\}_{i=1}^{k} \mid \mu_{i}(\cdot) \in L_{1}[0, T], \sum_{i=1}^{k} \mu_{i}(t)=1, \mu_{i}(t) \geq 0\right\}
$$

Let $X[0, T]$ denotes the solutions set of (1). Thanks to the conditions $\mathrm{A}(\mathrm{i})$ and $\mathrm{A}(\mathrm{ii})$ and the lemma of Filippov in [1] it holds the following

Proposition 1.
(2) $X[0, T]=\left\{x(\cdot) \mid x(t)=x_{0}+\int_{0}^{t} \sum_{i=1}^{k} \mu_{i}(s) a_{i}(x(s)) d s\right.$ on $\left.[0, T],\left\{\mu_{i}(\cdot)\right\}_{i=1}^{k} \in \mathcal{M}[0, T]\right\}$

Implicit midpoint rule: For a given integer number $j \geq 0$, the initial value x_{0} of the problem (1) and $h>0$, define the vector $x_{(j+1) h}$ by

$$
\begin{equation*}
x_{(j+1) h} \in\left\{x_{j h}+h z \mid z \in Z\left(h, x_{j h}\right)\right\} \equiv G_{j}\left(h, x_{j h}\right), \tag{3}
\end{equation*}
$$

where $Z\left(h, x_{j h}\right)$ denotes the solutions set of the implicit inclusion

$$
\begin{equation*}
z \in\left\{\left.\sum_{i=1}^{k} \alpha_{i} a_{i}\left(x_{j h}+\frac{h}{2} z\right) \right\rvert\,\left\{\alpha_{i}\right\}_{i=1}^{k} \in \mathcal{A}\right\} . \tag{4}
\end{equation*}
$$

Given an uniform grid $0=t_{0}<t_{1}<\ldots<t_{m}=T$ with stepsize $h=\frac{T}{m}$, we consider the approximate solution of (1) to be any sequence $\mathcal{X}_{h}=\left(x_{0}, x_{h}, \ldots, x_{m h}\right)$ obtained by (3) and (4). The reachable set of (1) at the point t in $[0, T]$ is $R(t)=$ $\{x(t) \mid x(\cdot) \in X[0, T]\}$. The reachable set associated with the discretezation (3)-(4) is $R_{j h}=\left\{x \mid x=x_{j h}\right.$ for some $\left.\mathcal{X}_{h}\right\}$.

The proofs of the next two assertions are standard and will be omitted.
Lemma 1. Suppose $f: R \rightarrow R^{n}$ is continuous function satisfying the condition of linear growth $\|f(x)\| \leq \vartheta(1+\|x\|)$ for some $\vartheta>0$. If $\eta>0$ be given, then for $\|x\| \leq \eta$ and positive $h \leq h_{0}<\frac{2}{\vartheta}$, there exists $z(h, x) \in \mathbb{R}^{n}$ such that:

$$
z(h, x)=f\left(x+\frac{h}{2} z(h, x)\right) \text { and }\|z(h, x)\| \leq \frac{2 \vartheta}{2-\vartheta h_{0}}(1+\eta) .
$$

Proposition 2. Let $T>0$ be given. Consider the implicit midpoint rule with $h=\frac{T}{m}$ for some integer $m>0$. Assume $a_{i}(\cdot), i=1,2, \ldots, k$ are continuous functions satisfying the condition of linear growth $A(i i)$, and denote $C=\frac{2 \vartheta}{2-\vartheta h_{0}}$. Then for each $\left\{\alpha_{i}\right\}_{i=1}^{k} \in \mathcal{A}$ and $h \leq h_{0}<\frac{2}{\vartheta}$ there exist $z\left(h, x_{j h}\right) \in Z\left(h, x_{j h}\right), j=0,1 \ldots, m-1$ such that

$$
\max _{j=0,1, \ldots, m-1}\left\|z\left(h, x_{j h}\right)\right\|<C\left(1+\left\|x_{0}\right\|\right) e^{C T} \text { and } \max _{j=0,1, \ldots, m}\left\|x_{j h}\right\|<\left(1+\left\|x_{0}\right\|\right) e^{C T}-1
$$

Let B denotes some closed ball in \mathbb{R}^{n} that contains the values of all exact solutions in $X[0, T]$ and the values $x_{j h}$ of all approximate solutions in $X_{h}[0, T]$ for $h<\frac{2}{\vartheta}$. Via the assumption A(i) we take advantage of the obvious Lipschitz continuity of the given $a_{i}(\cdot)$ on $B:\left\|a_{i}(x)-a_{i}(y)\right\| \leq M_{1}\|x-y\|$ for $x \in B, y \in B$.

Main result.
Lemma 2. Consider the family of sequences

$$
\mathcal{L}^{(l)}[0, T]=\left\{\left\{\lambda_{i}^{(l)}(\cdot)\right\}_{i=1}^{k} \mid \lambda_{i}^{(l)}(\cdot) \in C^{l}[0, T], \sum_{i=1}^{k} \lambda_{i}^{(l)}(t)=1, \lambda_{i}^{(l)}(t) \geq 0\right\}
$$

where $C^{l}[0, T], l=0,1,2, \ldots$ is the space of l-times continuously differentiable functions on $[0, T]$. We write $C[0, T] \equiv C^{0}[0, T], \mathcal{L}[0, T] \equiv \mathcal{L}^{(0)}[0, T], \lambda_{i}(\cdot) \equiv \lambda_{i}^{(0)}(\cdot)$, etc. Denote
(5) $\quad \widetilde{X}^{(l)}[0, T]=$

$$
\begin{gathered}
\left\{\widetilde{x}^{(l)}(\cdot) \mid \widetilde{x}^{(l)}(t)=x_{0}+\int_{0}^{t} \sum_{i=1}^{k} \lambda_{i}^{(l)}(s) a_{i}\left(\widetilde{x}^{(l)}(s)\right) d s \text { on }[0, T],\left\{\lambda_{i}^{(l)}(\cdot)\right\}_{i=1}^{k} \in \mathcal{L}^{(l)}[0, T]\right\}, \\
\widetilde{R}^{(l)}(t)=\left\{\widetilde{x}^{(l)}(t) \mid \widetilde{x}^{(l)}(\cdot) \in \widetilde{X}^{(l)}[0, T]\right\}
\end{gathered}
$$

We claim that, on the assumptions $A(i)$ and $A(i i), \widetilde{X}^{(l)}[0, T]$ and $\widetilde{R}^{(l)}(t)$ are dense subsets in $X[0, T]$ and $R(t)$:

$$
\begin{gathered}
X[0, T]=c l \widetilde{X}^{(l)}[0, T] \text { in the uniform metric of } C[0, T], \\
R(t)=c l \widetilde{R}^{(l)}(t) \text { in the norm metric of } \mathbb{R}^{n}, \text { uniformly in } t,
\end{gathered}
$$

where cl A is the closure of the set $A \subset \mathbb{R}^{n}$.
Proof. Let us first recall the well known statement: for any function $\mu(\cdot) \in L_{1}[0, T]$ and for any $\varepsilon>0$, there exists $\tau>0$, such that the Steklov's mean function $\lambda:[0, T] \rightarrow \mathbb{R}$, defined by

$$
\lambda(t)=\frac{1}{2 \tau} \int_{t-\tau}^{t+\tau} \nu(s) d s, \nu(s)=\{\mu(s) \text { if } t \in[0, T] \text { and } 0 \text { if } t \in \mathbb{R} \backslash[0, T]\}
$$

(see e.g. in [2]) is continuous and $\|\mu(\cdot)-\lambda(\cdot)\|_{L_{1}}<\varepsilon ;\|\cdot\|_{L_{1}}$ is the norm in $L_{1}[0, T]$. Denote by M the maximum of the Lipschitz constant M_{1} and the upper bounds of $\left\|a_{i}(\cdot)\right\|$, $i=1, \cdots, k$ on B. By the chain of inequalities

$$
\begin{aligned}
& \left\|x(t)-\widetilde{x}^{(l)}(t)\right\|=\left\|\sum_{i=1}^{k} \int_{0}^{t}\left(\mu_{i}(s) a_{i}(x(s))-\lambda_{i}^{(l)}(s) a_{i}\left(\widetilde{x}^{(l)}(s)\right)\right) d s\right\| \\
& \leq \sum_{i=1}^{k} \int_{0}^{t} \mid \mu_{i}(s)-\lambda_{i}^{(l)}(s)\left\|a_{i}(x(s))\right\| d s+\sum_{i=1}^{k} \int_{0}^{t} \lambda_{i}^{(l)}(s)\left\|a_{i}(x(s))-a_{i}\left(\widetilde{x}^{(l)}(s)\right)\right\| d s \\
& \leq k M \varepsilon+M \int_{0}^{t}\left\|x(s)-\widetilde{x}^{(l)}(s)\right\| d s \leq k M \varepsilon+\int_{0}^{t} \varepsilon k M^{2} e^{\int_{0}^{t} M d \xi} d s \leq k M\left(1+M T e^{M T}\right) \varepsilon
\end{aligned}
$$

we complete the proof.
Theorem. If the conditions $\mathrm{A}(\mathrm{i})$ and $\mathrm{A}(\mathrm{ii})$ are assumed, then for sufficiently small h the following estimates hold true:

1. For any x_{h} in R_{h}, there exists a $x(h)$ in $R(h)$ such that $\left\|x(h)-x_{h}\right\| \leq \mathcal{O}\left(h^{3}\right)$, where $\mathcal{O}\left(h^{3}\right)$ does not depend on x_{h};
2. For a given solution $x(\cdot) \in X[0, T]$, there exists $x_{h} \in R_{h}$ such that $\left\|x(h)-x_{h}\right\|=$ $o\left(h^{2}\right)$, where $o\left(h^{2}\right)$ depends on $x(\cdot)$.

Proof. By applying the Taylor's formula to the functions $a_{i}(\cdot)$ we obtain

$$
\begin{aligned}
x(h)-x_{h}= & \int_{0}^{h} \sum_{i=1}^{k}\left[\mu_{i}(s) a_{i}(x(s))-\alpha_{i} a_{i}\left(x_{0}+\frac{h}{2} z\left(h, x_{0}\right)\right)\right] d s \\
= & \int_{0}^{h} \sum_{i=1}^{k}\left(\mu_{i}(s)-\alpha_{i}\right) a_{i}\left(x_{0}\right) d s+\int_{0}^{h} \sum_{i=1}^{k} \mu_{i}(s) a_{i}^{\prime}\left(x_{0}\right)\left(x(s)-x_{0}\right) \\
& -\int_{0}^{h} \sum_{i=1}^{k} \alpha_{i} a_{i}^{\prime}\left(x_{0}\right) s z\left(h, x_{0}\right) d s+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

The term $\mathcal{O}\left(h^{3}\right)$ depends on the Lipschitz constant of the solutions of (1), the upper bound of the second derivatives $\left|\frac{\partial^{2} a_{i, r}}{\partial x_{p} \partial x_{q}}\right|$ of the vector components $a_{i, r}, r=1,2, \ldots, n$ on B (implied by A(i)), and the upper bound of $\| z\left(h, x_{0} \|\right.$ for sufficiently small h (see the Proposition 2). Interpolating by $x_{s}=x_{j h}+(s-j h) z\left(h, x_{j h}\right)$, and applying the Gronwall's inequality, we obtain $\left(M_{0}=\sum_{i=1}^{k}\left\|a_{i}^{\prime}\left(x_{0}\right)\right\|\right)$
(6) $\left\|x(h)-x_{h}\right\| \leq c_{1}(h)+c_{2}(h)+\mathcal{O}\left(h^{3}\right)+M_{0} e^{M_{0} h} \int_{0}^{h}\left(c_{1}(h)+c_{2}(h)+\mathcal{O}\left(h^{3}\right)\right) d s$,
where

$$
\begin{align*}
& c_{1}(h)=\left\|\sum_{i=1}^{k} a_{i}\left(x_{0}\right) \int_{0}^{h}\left(\mu_{i}(s)-\alpha_{i}\right) d s\right\| \tag{7}\\
& c_{2}(h)=\left\|z\left(h, x_{0}\right)\right\| \sum_{i=1}^{k}\left\|a_{i}^{\prime}\left(x_{0}\right)\right\|\left|\int_{0}^{h}\left(\mu_{i}(s)-\alpha_{i}\right) s d s\right| .
\end{align*}
$$

1. Let us fix an element in R_{h} associated with the sequence $\left\{\alpha_{i}\right\}_{i=1}^{k}$ in \mathcal{A}. Hence, by the sequence of functions $\left\{\mu_{i}(\cdot)\right\}_{i=1}^{k}$ in $\mathcal{M}[0, T]$ defined on $[0, h]$ by the substitutions $\mu_{i}(s)=\alpha_{i}$, we choose a point $x(h)$ in $R(h)$, for which the inequality (6) implies the desired estimate.
2. We shall first consider the set $\widetilde{X}[0, T]$. Let us fix a sequence $\left\{\lambda_{i}(\cdot)\right\}_{i=1}^{k}$ in $\mathcal{L}[0, T]$, that is equivalent to choose a solution $\widetilde{x}(\cdot)$ in $\widetilde{X}[0, T]$. Then, we put $\lambda_{i}(\cdot)$ for the functions $\mu_{i}(\cdot)$ into equations (7) and (8), and set $\alpha_{i}(h)=\frac{1}{h} \int_{0}^{h} \lambda_{i}(s) d s, i=1,2, \cdots, k$. It is easy 152

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1}{h^{2}} \int_{0}^{h}\left(s-\frac{h}{2}\right) \lambda_{i}(s) d s=\lim _{h \rightarrow 0} \frac{1}{2 h}\left(\int_{0}^{h}\left(-\frac{1}{2}\right) \lambda_{i}(s) d s+\frac{h}{2} \lambda_{i}(h)\right) \\
& =-\lim _{h \rightarrow 0} \frac{1}{4 h} \int_{0}^{h} \lambda_{i}(s) d s+\frac{1}{4} \lim _{h \rightarrow 0} \lambda_{i}(h)=-\frac{1}{4} \lim _{h \rightarrow 0} \lambda_{i}(h)+\frac{1}{4} \lambda_{i}(0)=0 .
\end{aligned}
$$

As a result we obtain $c_{1}(h)=0$ and $c_{2}(h)=o\left(h^{2}\right)$. For the latter estimate we make use of the boundedness of $\left\|z\left(h, x_{0}\right)\right\|$ (see the Proposition 2). Therefore, it follows from (6) that for a given solution $\widetilde{x}(\cdot) \in \widetilde{X}[0, T]$, the defined sequence $\left\{\alpha_{i}(h)\right\}_{i=1}^{k} \in \mathcal{A}$ determines a point $x_{h} \in R_{h}$ which satisfies $\lim _{h \rightarrow 0} \frac{1}{h^{2}}\left\|\widetilde{x}(h)-x_{h}\right\|=0$. In the remainder of the proof we fix an arbitrary $x(\cdot)$ in $X[0, T]$. From the Lemma 2 we have that for any $\varepsilon>0$, there exists $\widetilde{x}(\cdot) \in \widetilde{X}[0, T]$, such that

$$
\frac{\left\|x(h)-x_{h}\right\|}{h^{2}} \leq \frac{\|x(h)-\widetilde{x}(h)\|}{h^{2}}+\frac{\left\|\widetilde{x}(h)-x_{h}\right\|}{h^{2}}<\frac{\varepsilon}{h^{2}}+\frac{\left\|\widetilde{x}(h)-x_{h}\right\|}{h^{2}}
$$

holds for any h in $[0, T]$. Hence, by choosing $\varepsilon=o\left(h^{2}\right)$ we complete the proof.
To recall, the Hausdorff distance between the sets A and B is haus $(A, B)=$ $\max \{H(A, B), H(B, A)\}$, where $H(A, B)=\sup _{x \in A} \inf _{y \in B}\|y-x\|$.

Corollary. On the assumptions $\mathrm{A}(\mathrm{i})$ and $\mathrm{A}(\mathrm{ii})$ for sufficiently small h it holds

$$
\operatorname{haus}\left(R_{h}, R(h)\right) \leq \mathcal{O}\left(h^{2}\right)
$$

Proof. It suffices to invoke the substitutions $\alpha_{i}(h)=\frac{1}{h} \int_{0}^{h} \mu_{i}(s) d s, i=1,2, \cdots, k$ to deduce from (6): for every $x(\cdot) \in X[0, T]$ there exists $x_{h} \in R_{h}$, such that $\left\|x(h)-x_{h}\right\| \leq$ $\mathcal{O}\left(h^{2}\right)$, where $\mathcal{O}\left(h^{2}\right)$ does not depend on $x(\cdot)$. On the other hand, from the first statement of the Theorem it follows $H\left(R_{h}, R(h)\right) \leq \mathcal{O}\left(h^{3}\right)$. The last two estimates imply the claim.

Remark. The uniformity of the second estimate of the Theorem in respect with the solutions $x(\cdot)$ in $X[0, T]$ should be enough to prove $o\left(h^{2}\right)$ order of convergence for the Hausdorff semidistance $H\left(R(h), R_{h}\right)$, which together with $H\left(R_{h}, R(h)\right) \leq \mathcal{O}\left(h^{3}\right)$ should imply haus $\left(R_{h}, R(h)\right)=o\left(h^{2}\right)$. But, it can be shown that this uniformity is not available in general and the estimate of the Hausdorff distance between R_{h} and $R(h)$ can not be better than $\mathcal{O}\left(h^{2}\right)$.

REFERENCES

[1] A. F. Filippov. On some problems of optimal control theory, Vestnik Moskowskogo Universiteta, Math. 2 (1959), 25-32 (in Russian).
[2] A. B. Antonevitch, J. V. Radajno. Functional Analysis and Integral Equations, Minsk, University Publishing, 1984 (in Russian).

Nedka Velikova Pulova	Vladimir Ivanov Pulov
Department of Mathematics	Department of Physics
TU-Varna	TU-Varna
1, Studentska Str.	1, Studentska str.
9010 Varna, Bulgaria	9010 Varna, Bulgaria

ЕДНА НЕЯВНА СХЕМА НА РУНГЕ-КУТА ЗА КЛАС ДИФЕРЕНЦИАЛНИ ВКЛЮЧВАНИЯ: ОЦЕНКИ НА ЛОКАЛНАТА ГРЕШКА

Радостин Петров Иванов

Недка Великова Пулова, Владимир Иванов Пулов

Разгледана е многозначна версия на една неявна схема на Рунге-Кута, известна от теорията на диференциалните уравнения като неявно правило на средната точка, в приложение към клас от диференциални включвания. Получени са оценки на локалната грешка.

