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DIFFERENTIAL INCLUSIONS: LOCAL ERROR ESTIMATES

| Radostin Petrov Ivanov |,
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A multivalued version of an implicit Runge-Kutta method known from the field of
differential equations as the implicit midpoint rule is considered. The method is
applied to a class of differential inclusions. Certain local error estimates are obtained.

Introduction. We consider the initial value problem of finding an absolutely
continuous function z(t) € R"™ on the interval [0, T satisfying the differential inclusion

k
dx(t
(1) ng ) € co U a;(x(t)) for almost all ¢ € [0,T], x(0) = xo,
i=1
where co means the convex hull and the given functions a;(-) : R" - R", i =1,2,...,k

are supposed to satisfy the following assumptions:
A(i):  a4(-) are twice continuously differentiable, and
A(ii):  a4(-) are with linear growth: |Ja;(x)] < ¥(1 + ||z||) for some positive ¥,

where || - || is the Euclidean norm.
For any sequence of k elements (f1, f2,...,fr) we use the notation {f;}¥ ;. Denote
k
A= {{ai}f_l a; €R, Y a; =1, a; > 0. The set of all measurable (single-valued)
i=1

selections of the mapping ¢t — A, defined on [0, 7] is given by

k
M0, T] = {{ux-)}i;l i) € Laf0. 7). 3 st) = 1, ut) > o} .

i=1
Let X[0,T] denotes the solutions set of (1). Thanks to the conditions A(i) and A(ii) and
the lemma of Filippov in [1] it holds the following

Proposition 1.
Lok

(2) X[0,T] = § ()] (t) = w0 + /ZM(S)az‘(ﬂf(S))ds on [0, T, {pi(-)}i=y € M[0,T]
0 =1
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Implicit midpoint rule: For a given integer number j > 0, the initial value xy of
the problem (1) and h > 0, define the vector x(j11y, by

(3) T(+n € {@jn + hzlz € Z(h,zn)} = Gj(h, xjn),

where Z(h,x;n) denotes the solutions set of the implicit inclusion

4) z € {Zk: o a; (mjh + gz)

{ai}i, € A} :

i=1
. . . . . T
Given an uniform grid 0 = ¢y < t1 < ... < t,, = T with stepsize h = —, we
m
consider the approximate solution of (1) to be any sequence X, = (Zo,Zp,...,Tmh

| | N~—

obtained by (3) and (4). The reachable set of (1) at the point ¢ in [0,7] is
{z(t)|z(-) € X[0,T]}. The reachable set associated with the discretezation (3
Rjn = {z|x = x;3 for some X} }.

The proofs of the next two assertions are standard and will be omitted.

R(t)
-(4)

is

Lemma 1. Suppose f : R — R™ is continuous function satisfying the condition of
linear growth || f(z)|| < 91 + ||z||) for some ¥ > 0. If n > 0 be given, then for ||z| < n

and positive h < hg < 5 there exists z(h,x) € R" such that:

2(ha) = (ot Da(h2)) and [2(h,2)] < (1)

0
— 2—19hyg

T
Proposition 2. Let T' > 0 be given. Consider the implicit midpoint rule with h = —
m

for some integer m > 0. Assume a;(+), i =1,2,...,k are continuous functions satisfying

29
T ohe Then for each {a;}f_, € A

2
and h < hg < 3 there exist z(h,z;n) € Z(h,x;n), 7 =0,1...,m — 1 such that

the condition of linear growth A (ii), and denote C =

_omax z(h,z;n)ll < C(L+ [|lzol)e”" and _max lajn|l < (14 [|lzol)e”” — 1.
7=0,1,....m—1 7=0,1,....m

Let B denotes some closed ball in R" that contains the values of all exact solutions
in X[0,T] and the values z;, of all approximate solutions in X[0, T for h < 3 Via the

assumption A(i) we take advantage of the obvious Lipschitz continuity of the given a;(+)
on B: |la;(z) — a;(y)|| < Mi|jlz —yl| for x € B, y € B.

Main result.

Lemma 2. Consider the family of sequences

k
L0, 1) = {{AE”(J}Z }AE”@ ec'o,1), A"t =1 2"() = o} ,

i=1
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where C[0,T], 1 = 0,1,2,... is the space of l-times continuously differentiable functions
on [0,T]. We write C[0,T] = C°[0,T], £[0,T] = LO0,T], \i(-) = )\EO)(-), etc. Denote

(5) XD[0,7)=

bk
0 ()0 (1) = /Z a:(@0(s))ds on [0.T], O}, € £0[0,7] b,

RO = {300 () e XV[0,11}.

We claim that, on the assumptions A (i) and A(ii), X1[0,T] and RV (t) are dense subsets
in X[0,T] and R(t):

X[0,7) = cdXD[0,T] in the uniform metric of C[0,T],

R(t) = cd RO(t) in the norm metric of R", uniformly in t,

where cl A is the closure of the set A C R".

Proof. Let us first recall the well known statement: for any function u(-) € L1[0,T)
and for any € > 0, there exists 7 > 0, such that the Steklov’s mean function A : [0,7] — R,
defined by

t+7
1
A = o / W(s)ds, v(s) = {u(s) if t € [0,T] and 0 if ¢ € R\ [0, 7]}
T
t—7
(see e.g. in [2]) is continuous and ||u(-) — A()|lz, < &; || - |z, is the norm in L0, T7.

Denote by M the maximum of the Lipschitz constant M; and the upper bounds of ||a;(-)l,
i=1,---,k on B. By the chain of inequalities

—z0@)| = A N0 (70
o) = 3001 = |5 flonts)an(a(e) ~ A (a2 5)) ds
séj%@&%ﬂm<un@+§gW>n%<mmemws

t t
< kMe + M [ [o(s) — 30 (s)|| ds < kMe + [ ckM2edo M€ gs < kM (1 + MTeMT)e
0 0

we complete the proof. [

Theorem. If the conditions A(i) and A(il) are assumed, then for sufficiently small h
the following estimates hold true:
1. For any zy, in Ry, there exists a z(h) in R(h) such that ||x(h) — x| < O(R?),
where O(h?) does not depend on xp;
2. For a given solution z(-) € X[0,T), there exists x, € Ry, such that ||x(h) — zp| =
o(h?), where o(h?) depends on z(-).
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Proof. By applying the Taylor’s formula to the functions a;(-) we obtain

h g
x(h) —xp, = /Z [ui(s)ai(x(s)) — aja;(xo + gz(h,xo))] ds
Oh k h
=[S te) — aastan)ds+ [ 3 m(s)al o) n(s) o)
O =1 o =1

by
—/Zala x0)sz(h, 2) ds + O(h®).
0

i=1

The term O(h?) depends on the Lipschitz constant of the solutions of (1), the upper
2

0%a;,

Oz 8

on B (implied by A(i)), and the upper bound of ||z(h,xol|| for sufficiently small h (see

the Proposition 2). Interpolating by zs = x;n + (s — jh)z(h,z;5), and applying the
k

bound of the second derivatives of the vector components a;,, r =1,2,...,n

Gronwall’s inequality, we obtain (Mo = > |la}(z0)||)
i=1

h
(0) Nolh) = n]| < ex(b) +calh) + OU) + Mac " [ (ea(m) + ca(h) + O(1) s,
0
where
k h
(” ) = D )~ o)
e fue
h
0 ex(h) = Ja(hmo) ||Z||a o)l | [ (o) = a)sats.

- 0

1. Let us fix an element in Ry, assomated with the sequence {c;}*_; in A. Hence,
by the sequence of functions {s;(-)}%_; in M(0,T] defined on [0, k] by the substitutions
1i(s) = a;, we choose a point z(h) in R(h), for which the inequality (6) implies the
desired estimate.

2. We shall first consider the set X[0,7]. Let us fix a sequence {\;(-)}%_, in £[0, T,

that is equivalent to choose a solution Z(-) in X[0, T]. Then, we put A;(-) for the functions
h
1
wi(+) into equations (7) and (8), and set «;(h) = E/)\Z(S) ds,i=1,2,--- k. Tt is easy
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h2
< 3 and hence, applying the L’Hopital rule we have

h
t ({(s - g))\l(s) ds

h
.1 h h
%{I})ﬁ/<55>>‘()d‘s }llli%ﬁ /( ) s)ds+ — )\(h)
0 0

1 . 1
:—hm—/)\ dS—&-th)\(h):—zillli%)\i(h)—i-z)\i(o)—

As a result we obtain ¢;(h) = 0 and co(h) = o(h?). For the latter estimate we make use
of the boundedness of ||z(h,z¢)|| (see the Proposition 2). Therefore, it follows from (6)

that for a given solution Z(-) € X[0, 7], the defined sequence {c;(h)}¥_; € A determines
a point x;, € Rj, which satisfies limy, .o -5 [|Z(h) — x4/ = 0. In the remainder of the proof

we fix an arbitrary z(-) in X[0,7]. From the Lemma 2 we have that for any ¢ > 0, there
exists Z(-) € X|[0,T], such that

lz(h) —xnll _ llz(h) —z(h)|| | |Z(h) —xnll e | ||z(h) — 24
PR 12 Tt St e

holds for any h in [0, T]. Hence, by choosing ¢ = o(h?) we complete the proof. [
To recall, the Hausdorff distance between the sets A and B is haus(4,B) =
max{H (A, B),H(B,A)}, where H(A, B) = sup inf |y — z||.
zcAYEB

Corollary. On the assumptions A(i) and A(ii) for sufficiently small h it holds

haus(Rp,, R(h)) < O(h?).

h

/ui(s)ds,izl,Q,n-,k‘ to

0

deduce from (6): for every z(-) € X[0,T] there exists xj, € Ry, such that ||z(h) — 2] <
O(h?), where O(h?) does not depend on z(-). On the other hand, from the first statement
of the Theorem it follows H(Rp, R(h)) < O(h3). The last two estimates imply the
claim. O

Remark. The uniformity of the second estimate of the Theorem in respect with the
solutions () in X[0,7] should be enough to prove o(h?) order of convergence for the
Hausdorff semidistance H(R(h), Ry), which together with H(Ry, R(h)) < O(h?) should
imply haus(Rp, R(h)) = o(h?). But, it can be shown that this uniformity is not available
in general and the estimate of the Hausdorff distance between Rj, and R(h) can not be
better than O(h?).

Proof. It suffices to invoke the substitutions a;(h) =

SRS
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EOHA HEABHA CXEMA HA PYHT'E-KYTA 3A KIJIAC
JUNOEPEHIIVNAJIHA BKIJIFOUYBAHWS:
OIEHKN HA JIOKAJIHATA T'PEIIIKA

Pamocrun Ilerpos Bamos |,

Henka Benukosa IlynoBa, Baanumup Wsanos Ilymnos

Pasrnemana e MHOrO3HaUHA Bepcus Ha e€OHA HesBHA cxeMa Ha Pynre-Kyra, m3Bect-
HAa OT TeOpUATa Ha nudepeHnnaIHITe YPABHEHNUS KAaTO HEeSIBHO IPABUJIO HA CPeIHATA
TOYKA, B IPUJIOKEHNE KBbM KJjIac 0T nudepeHnua iy BKiaouBanns. [lomyyenu ca ouen-
KU Ha JIOKAJHATA I'PeIIKa.
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