MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2001 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001

Proceedings of Thirtieth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 8–11, 2001

NECESSARY AND SUFFICIENT CONDITION FOR PSEUDOCONVEXITY OF A FUNCTION

Vsevolod Ivanov Ivanov

A first order characterization of pseudoconvex and of strictly pseudoconvex functions on \mathbb{R}^n is given. A relationship with invexity is analysed.

1. Introduction. Throughout this work X is an open convex subset of the finite-dimensional Euclidean space \mathbb{R}^n .

Recall the following concepts.

The function $f: X \to \mathbb{R}$ is said to be *quasiconvex* iff

$$f(x+t(y-x)) \le \max\{f(x), f(y)\}$$
 whenever $x, y \in X$ and $0 \le t \le 1$.

Lemma 1.1. ([1]) Let $f: X \to \mathbb{R}$ be a differentiable function. Then f is quasiconvex if and only if the following implication holds:

$$x, y \in X, f(y) \le f(x)$$
 imply $\langle f'(x), y - x \rangle \le 0.$

Here by $\langle \cdot, \cdot \rangle$ is denoted the usual scalar product in finite-dimensional space.

The differentiable function $f: X \to \mathbb{R}$ is said to be *pseudoconvex* (strictly pseudoconvex) on X [3] iff

$$x, y \in X, f(y) < f(x) (x \neq y, f(y) \leq f(x))$$
 imply $\langle f'(x), y - x \rangle < 0$.

This notion is introduced by Mangasarian in 1965.

The differentiable function $f:X\to\mathbb{R}$ is said to be *invex* on X if there exists a mapping $\eta:X\times X\to\mathbb{R}^n$ such that

$$f(y) - f(x) \ge \langle f'(x), \eta \rangle$$
 for all $x, y \in X$.

This notion is introduced by Hanson [2].

It is well-known that each pseudoconvex (strictly pseudoconvex) function is invex. Then one can put the following question: Is the mapping η from the definition of invexity of a special form if the invex function f is pseudoconvex. The answer is: $\eta(x,y) = p(x,y)(x-y)$, where p(x,y) is some real positive function. The main result of the paper is a first order necessary and sufficient condition for pseudoconvexity and for strictly pseudoconvexity of a differentiable function, connected with this question.

2. A characterization of the pseudoconvex functions. This section contains only the following theorem:

Theorem 2.1. The differentiable function $f: X \to \mathbb{R}$ is pseudoconvex (strictly pseudoconvex) if and only if there exists a positive function $p: X \times X \to \mathbb{R}$ such that

(1)
$$f(y) - f(x) \ge p(x,y) \langle f'(x), y - x \rangle \quad \text{for all} \quad x, y \in X$$
$$(f(y) - f(x) > p(x,y) \langle f'(x), y - x \rangle \quad \text{for all} \quad x, y \in X, \ x \ne y).$$

Proof. We shall consider only the pseudoconvex case. The strictly pseudoconvex case is similar.

Sufficiency is obvious.

Necessity. Let f be pseudoconvex, but (1) fails. Consequently, there exist $x, y \in X$ satisfying

(2)
$$f(y) - f(x) 0.$$

By taking the limits, as $p \to 0$ we get that $f(y) \le f(x)$. If f(y) < f(x), then according to the pseudoconvexity $\langle f'(x), y - x \rangle < 0$. As a result, (2) must not be satisfied for all sufficiently large p > 0. If f(y) = f(x), since each pseudoconvex function defined on an open convex set is quasiconvex, then by quasiconvexity, $\langle f'(x), y - x \rangle \le 0$. The last inequality is a contradiction to the implication (2). \square

The class of functions which satisfies the inequality (1) is called by Weir [4] strongly pseudoconvex. It follows from the proved theorem that this class coincides with the pseudoconvex ones.

REFERENCES

- [1] K. J. Arrow, A. C. Enthoven. Quasiconcave programming. *Econometrica*, **29** (1961), 779–800
- [2] M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl., 80 (1981), 545–550.
- [3] O. L. Mangasarian. Nonlinear programming. Repr. of the orig. 1969. Classics in Applied Mathematics. 10. Philadelphia, PA: SIAM, 1994.
- [4] T. Weir. On strong pseudoconvexity in nonlinear programming duality. *Opsearch.*, **27** (1990), No 2, 117–121.

Vsevolod Ivanov Ivanov Technical University of Varna Department of Mathematics 9010 Varna, Bulgaria

e-mail: vsevolodivanov@yahoo.com

НЕОБХОДИМО И ДОСТАТЪЧНО УСЛОВИЕ ЗА ПСЕВДОИЗПЪКНАЛОСТ НА ФУНКЦИЯ

Всеволод Иванов Иванов

В статията е дадена характеризация от първи ред на псевдоизпъкналите и на строго псевдоизпъкналие функции в пространството \mathbb{R}^n . Анализирана е връзка с инвексните функции.