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We study the twistor space Z of D ×CP
1. If the scalar curvature of D ×CP

1 is zero,
then it is known that Z is a complex manifold, so every almost complex structure of
D ×CP

1, compatible with the metric is integrable. Our main result is that the set
of all integrable structures of D ×CP

1 is a real quadric, which we describe explicitly.
As a corollary we get the same result for ruled surfaces of genus g ≥ 2 and of an even
degree.

1. Preliminaries. Here we introduce the twistor space of an oriented even dimen-
sional Riemannian manifold M , following the notations of [2], [3] and [5].

Let (M, g) be an oriented connected Riemannian manifold of real dimension 2n. Let
P be the SO(2n)-principle bundle of oriented g-orthonormal frames on M . Denote by
π : P → M the canonical projection. Then SO(2n) acts on the right on P .

Consider local coordinates {x1, . . . , x2n} in a nieghborhood U of x ∈ M , and let
{θ1, . . . , θ2n} be a local oriented g-orthonormal frame.

The fibre π−1(x) is diffeomorphic to SO(2n). Let us denote by i : π−1(x) → P the
fibre’s inclusion, then

Ṽa = i∗|a(Taπ−1(x))

is called the vertical tangent space at the point a.
Let {θ∗1 , . . . , θ

∗
2n} be the local coframe dual to {θ1, . . . , θ2n}, then the covariant deriva-

tive ∇ on M defined by the Levi-Civita connection of g is locally expressed by: ∇θj =

Γk
ijθ

∗
i ⊗θk, and the Christoffel’s symbols satisfy Γk

ij = −Γj
ik, so the matrix (Γ·

i·) ∈ so(2n).

Hence (according to [4]), the Riemannian connection on P at the point a = (x; X̃) =
(x; (X i

j)), induced by g, can be expressed by:

ωi
j(x; X̃) =

1

2
(Xr

i dXr
j − Xr

j dXr
i ) + Xr

i Γr
ml(x)X l

jθ
∗
m(x)(1)

The connection ω = (ωi
j) on P induces a splitting of the tangent bundle in horizontal

and vertical subbundles, at the point a:

TaP = H̃a ⊕ Ṽa,

where

H̃a := {Y ∈ TaP | ω(Y ) = 0}

is the horizontal tangent space at the point a.
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SO(2n) acts transitively on
SO(2n)

U(n)
. Then we have an action of SO(2n) on P ×

SO(2n)

U(n)
, defined by:

(2)
SO(2n) × P ×

SO(2n)

U(n)
→ P ×

SO(2n)

U(n)
,

(A, a, XU(n)) → (aA, A−1XU(n)).

Definition 1.The twistor space of (M, g) is the associated bundle to P defined as the

quotient of P ×
SO(2n)

U(n)
with respect to the action (2). It will be denoted by Z(M, g), or

simply by Z, when the manifold (M, g) is understood.

Z is a bundle over M with fibre
SO(2n)

U(n)
and structure group SO(2n). Denote by

Π : P → Z and by r : Z → M the bundle projections, and by Zx := r−1(x) the fibre of
Z at the point x ∈ M . The geometric meaning of Z is clear from the following:

Theorem 1.1. Zx parametrizes the complex structures on TxM compatible with the
metric g and the orientation.

The splitting TaP = H̃a ⊕ Ṽa, via Π induces a corresponding splitting of TpZ for
p ∈ Z. Let a ∈ Π−1(p). Then

TpZ = (Π)∗|a(H̃a) ⊕ (Π)∗|a(Ṽa) := Hp ⊕ Vp.

We have immediately that r∗|p(Hp) = Tr(p)M . Then for every p ∈ Z and for ev-
ery tangent vector X ∈ TpZ, we have a decomposition of X in horizontal and vertical
component:

X = Xh + Xv, Xh ∈ Hp, Xv ∈ Vp.

Let us define an almost complex structure J on Z: for X = Xh + Xv ∈ TpZ, we set:

J(X) = r−1
∗|r(p) ◦ p ◦ r∗|p(Xh) + JV (Xv),

where p acts on Tr(p)M according to Theorem 1.1, and JV is the almost complex structure

of the symmetric space Zr(p)
∼=

SO(2n)

U(n)
.

2. Main results. We explore the complex inclusions of D ×CP
1 in its twistor

space and in consequence we get the explicit record of its complex structures.
We use the notations of the previous section. Let D be the one-dimensional disc

equipped with Poincare metric with scalar curvature −1− ε, (ε > −1), and CP
1 denotes

the projective 1-dimensional space with Fubini-Study metric with scalar curvature +1.
We denote the real local coordinates on D and CP

1 with x1, y1 and x2, y2, respectively.
According to [8] their metrics are:

gD =
dx1 ⊗ dx1 + dy1 ⊗ dy1

1 −
1 + ε

4
(x2

1 + y2
1)

, gCP1 =
dx2 ⊗ dx2 + dy2 ⊗ dy2

1 +
1

4
(x2

2 + y2
2)

.

We set:

A :=
1

1 −
1 + ε

4
(x2

1 + y2
1)

, B :=
1

1 +
1

4
(x2

2 + y2
2)

.
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We choose x = (x1, y1, x2, y2) ∈ D ×CP
1. An orthonormal frame for Tx(D×CP

1) is
{

θ1 =
1

A

∂

∂x1
, θ2 =

1

A

∂

∂y1
, θ3 =

1

B

∂

∂x2
, θ4 =

1

B

∂

∂y2

}

and an orthonormal frame for T ∗
x (D×CP

1) is

{θ∗1 = Adx1, θ∗2 = Ady1, θ∗3 = Bdx2, θ∗4 = Bdy2}.

From the condition ∇θj = Γk
ijθ

∗
i ⊗θk for the metric of D ×CP

1, we compute its Christof-
fel’s symbols and therefore we get the following:

Lemma 2.1.The curvature components of the metric of D ×CP
1 defined above are:

R1
212 = εA2, R3

434 = εB2,

R1
313 = R1

414 = R2
323 = R2

424 = εAB,

Ri
jkl = 0, else, where i < j, k < l.

In order to parametrize the fibre in more convenient way, we use the following:

Lemma 2.2.

SO(4)

U(2)
∼= CP

1.

Proof. Let H ∼= R4 be the space of quaternions with a basis {1, i, j, k} over R with
the relations:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i= −kj, ki = j = −ik.

The standart complex structure J2 of R4 is identified with the left multiplication with i.
Let S3 be the unit sphere in R4, i.e. the space of unit quaternions. Let q ∈ S3, q = a+i

b+ jc+ k d = z1 + z2j, where z1 = a+ib, z2 = c+id. We define the following maps:

c1 : CP
1 → S3, [z1 : z2] 7→ q; c2 : S3 → CP

1, q 7→ [z1 : z2].

For every q ∈ S3 we define a matrix Aq ∈ SO(4), which corresponds to a left multi-
plication with the conjugate of q, in other words, Aqx = q̄ · x, where x ∈ H = R4 and
“·” is the quaternionic multiplication. Reversly, for every matrix A ∈ SO(4), we define
a unit quaternion q with the same equation. We obtain the following maps:

s1 : S3 → SO(4), q 7→ Aq ; s2 : SO(4) → S3, Aq 7→ q.

Note that for q1, q2 ∈ S3, Aq1
= Aq2

if and only if q̄−1
1 q̄2 ∈ U(2)

Now we can define the maps:

p1 : CP
1 →

SO(4)

U(2)
, [z1 : z2] 7→ AqU(2), p1 = pr ◦ s1 ◦ c1

and

p2 :
SO(4)

U(2)
→ CP

1, AqU(2) 7→ [z1 : z2], p2 = c2 ◦ s2 ◦ i ,

where pr : SO(4) →
SO(4)

U(2)
and i :

SO(4)

U(2)
→ SO(4).

It is easily seen that the maps p1 and p2 are correctly defined and they are isomor-

phisms between CP
1 and

SO(4)

U(2)
. �
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Remark 1. We associate to Aq the almost complex structure Jq = A−1
q J2Aq , com-

ming from Theorem 1.1. After some computations we get:

Jq =











0 −S 2(ad + bc) 2(bd − ac)

S 0 2(bd − ac) −2(ad + bc)

−2(ad + bc) 2(ac − bd) 0 −S

2(ac − bd) 2(ad + bc) S 0











,

where S = a2 + b2 − c2 − d2.

In order to compute a local frame for H̃a, a ∈ π−1(U), it suffices to compute horizontal
lifts θ̃j of θj for 1 ≤ j ≤ 4. In the notations of the previous paragraph, θ̃j is uniquely

determined by: π∗|a(θ̃j) = θj(π(a)) and ω(a)(θ̃j) = 0 for all a ∈ π−1(U), where ω is

defined by (1). The local frames θ̂j , 1 ≤ j ≤ 4, for Hp, p ∈ Z are the projections of θ̃j :

θ̂j = Π∗|a(θ̃j).

We consider local coordinates {u1, u2} on the fibre CP
1, where u :=

z2

z1
, u = u1 +

iu2. So the local coordinates on the twistor space Z are {x1, y1, x2, y2, u1, u2}. If we

choose local coordinates {v1, v2} on the fibre CP
1, where v :=

z1

z2
, v = v1 + iv2, then

the computations will be analogous. Let p = (x1, y1, x2, y2, u1, u2) ∈ Z. According to

Remark 1, we can compute J in the chosen local coordinates, as well as J θ̂j , 1 ≤ j ≤ 4.

Now we can compute explicitely all terms of the Njienhuis tensor

N(J)(p)(X, Y ) = [JX, JY ] − J [X, JY ] − J [JX, Y ] − [X, Y ].

For convenience we will write N(X, Y ) instead of N(J)(p)(X, Y ).

Lemma 2.3.

N(θ̂1, θ̂2) = N(θ̂3, θ̂4) =
8ε(u2

∂

∂u1
− u1

∂

∂u2
)((A2 + B2)(u2

1 + u2
2) − 2AB)

(1 + u2
1 + u2

2)
2 ,

N(θ̂1, θ̂3) = −N(θ̂2, θ̂4) = −
4ε(1 + u2

1 − u2
2)((A

2 + B2)(u2
1 + u2

2) − 2AB)

(1 + u2
1 + u2

2)
2

∂

∂u1
−

−
8εu1u2((A

2 + B2)(u2
1 + u2

2) − 2AB)

(1 + u2
1 + u2

2)
2

∂

∂u2
,

N(θ̂1, θ̂4) = N(θ̂2, θ̂3) = −
8εu1u2((A

2 + B2)(u2
1 + u2

2) − 2AB)

(1 + u2
1 + u2

2)
2

∂

∂u1
−

−
4ε(1− u2

1 + u2
2)((A

2 + B2)(u2
1 + u2

2) − 2AB)

(1 + u2
1 + u2

2)
2

∂

∂u2
.

According to the Newlander-Nirenberg Theorem, an almost complex structure is in-
tegrable if and only if its Nijenhuis tensor vanishes. We apply it for the horizontal
subbundle of Z and get the following result:

Theorem 2.1. If ε = 0, then Z is a complex manifold, else D × CP
1 embeds in Z

166



as a complex submanifold with the help of the section

φ : D × CP
1 → Z,

(x1, y1, x2, y2) 7→ (x1, y1, x2, y2, u1, u2)

if and only if

u2
1 + u2

2 =
2AB

A2 + B2
,

where A and B are defined above.

Corollary 2.1.1. If ε = 0, then all almost complex structures of D×CP
1, compatible

with the metric, are integrable, else the set of integrable complex structures is a quadric.

Remark 2. In the case ε 6= 0, all integrable almost complex structures, com-
patible with the metric are in the equivalent class with representative of the form:

J =

(

JH 0
0 JV

)

, where JV =

(

0 1
−1 0

)

,

JH =
1

1 + u2
1 + u2

2











0 1 − u2
1 − u2

2 2u2 −2u1

u2
1 + u2

2 − 1 0 −2u1 2u2

−2u2 2u1 0 1 − u2
1 − u2

2

2u1 2u2 u2
1 + u2

2 − 1 0











,

and moreover u2
1 + u2

2 =
2AB

A2 + B2
.

Remark 3. It is interesting that the above properties we got do not depend on the
exact value of ε, but only on the condition if it is equel or not to zero.

Remark 4. Although the submanifolds φ(D × CP
1) of Z are the same as smooth

manifolds for different values of ε, their induced metrics are different.

Remark 5. Since D1 is the universal cover of Riemmanian surfaces of genus g ≥ 2,
then Theorem 2.1 is true for every ruled surface of genus g ≥ 2 and of an even degree
(see [6]).
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[7] Séminaire Arthur Besse 1978/79, Géometrie Riemannienne en dimension 4. Cedic/Fernand
Nathan, Paris, 1981.

[8] J. Wolf. Spaces of Constant Curvature. Univ. of California, Berkley, 1972.

167



Ljudmila K. Kamenova
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier
1164 Sofia, Bulgaria
e-mail: kamenova@fmi.uni-sofia.bg

#�$�%'&�(*)+#�,+-�./,�0�12�#�032�1.54
6718�29(*.�-�.�1:�-�./&�$�4
6718�-�.�-�.

(�;�<>=+?A@�B�#DCE#�BF=+GIH JLKMB

NPORQTSVUXWYU[Z]\_^`WbaVcd^`eXfIgTeh^`e
iIfIebcd^TfVU[gTcd^`Whe
Z
gVU

D × CP
1 jAkml e
c l U[nVU[fIgVUb^IU l fTaIWbaVgVU

gVU
D × CP

1
co\�U[gTQYnTaVfVU`pFq`ebr[fI\+aVORWh\ocd^`gTe_\bpMSI\

Z
\ l eXZAiIn`\ l cogTe�ZAgTe[soebebr[fVU[ORaV\bp!eh^`t

l`u q`\d^`evWhcow l U+iTedSV^`a l eXZAiIn`\ l cogVUvcd^TfTQ l ^`QTfVUxgVU
D× CP

1,
c u WhZ]\ocd^`aVZyU+cxZ]\d^TfTa l Ub^IU

\3aVgV^`\zs[fTQT\oZyU jF{ cogTedWhgTaVwh^
gTa�fI\oORQYnV^IUb^_\bpFSI\3ZAgTe[|m\ocd^`Wheh^`e�eh^}WhczaVS l a
aVgV^`\zs[fTQT\oZ]a
cd^TfTQ l ^`QTfTa~gVU

D×CP
1
\mfI\dU[nIgVU l WYU[qVfTa l U`p l ebwh^`eveXiTaVczWYU[Z]\mW+w[Wh\og�WbaIq jY� Ub^`evcon`\RqIt

cd^`WbaV\+iTebnTQTSVUXWYU[Z]\~c uI� aVwh^�fI\oORQYnV^IUb^
OzU�nTaVgTaVfVU[gTa�iTedW u fY�TgTaVgTa�eh^�fIeoq g ≥ 2
a�eh^

SI\d^`gVU3cd^`\oiT\og j

�b�T�


