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In this paper we consider properties of additive complex matrix operators which
are not necessarily linear. In particular we define norms of such operators. These
operators arise in the perturbation analysis of complex symmetric algebraic matrix
equations, such as algebraic Lyapunov equations, Riccati equations, associated Riccati
equations [1], etc. An application of the results obtained to the perturbation analysis
of the standard continuous-time algebraic Lyapunov equation is demonstrated.
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1. Introduction and notation. In this paper we consider some properties of
complex additive matrix operators which may not be linear operators. We are especially
interested in determining norms of complex additive operators.

We use the following notations: R and C — the sets of real and complex numbers,
R, = [0,00); F - a replacement of R or C; F™*" — the space of m xn matrices over F; AT,

A and AH = ZT — the transpose, complex conjugate and complex conjugate transpose
of the matrix A; A* — the matrix A" if A is real or the matrix A" if A is complex;
vec(A) € F™ — the column-wise vector representation of A € F™*"; II,,,, € Fmnxmn
— the vec-permutation matrix such that vec(AT) = II,,,, vec(A); spect(A) C C — the set
of eigenvalues of A € C"*"; || - ||, — the Holder p-norm (1 < p € Ry) in F?; ||A4|pq =
masc{| Az, : o]}y = 1} the Holder (p, g)-norm of A € F™7, |[A]l, = | Allyp: |-l - the
Frobenius norm in F™*"; Lin(p, m,n, q,F) — the set of linear matrix operators F*" —
FP*¢ Lin(m,n,F) = Lin(m, m,n,n,F), Lin(n,F) = Lin(n, n,n,n,F); Lyap(n,F) — the
set of Lyapunov matrix operators £ : F"*" — F"*" defined by the condition £(X*) =
(L(X))* (we stress that Lyap(n,R) C Lin(n,R) but Lyap(n,C) is not a subspace of
Lin(n,C)); Mat(£) € FP7*™" — the matrix of the operator £ € Lin(p, m,n, ¢, F, defined
via vec(L(X)) = Mat(L)vec(X).

We also consider the vec-operator vec(:) as a linear isomorphism between the cor-
responding linear spaces of matrices and vectors. Here the size of matrices may be
skipped without any misunderstanding. However, the notation of the inverse vec-operator
vec™1(-) may require an indication of the size of the resulting matrices. For example,
given I € N and m,n € N with mn = I, the operator vec, !, (-) transforms vectors from
F! into matrices from F™*". If the co-domain of the inverse vec-operator is clear from
the context, we omit the subindexes in the notation vec™!(-).

“ »

The abbreviation “:=" means “equal by definition”.
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2. Motivating example. In this section we consider a complex Lyapunov ma-
trix equation, arising in the stability analysis and other areas of systems theory. The
perturbation analysis of such equations leads to additive operators which are non-linear
pseudo-polynomial functions.

Consider the perturbation analysis problem for the complex continuous-time Lya-
punov matrix algebraic equation

(1) La(X):=A"X+XA=C,

where A, C' € C™*™ are given matrix coeflicients and X € C™*" is the unknown matrix.
We suppose that the Lyapunov operator £4 € Lyap(n, C) is invertible which is equiva-
lent to the requirement that for all A, u € spect(A) it is fulfilled A + 7z # 0. If the matrix
C is Hermitian (i.e., if C® = C) then the unique solution X of (1) is also Hermitian.

Let §A and 0C be perturbations in A and C. Denote d4 := [|0A]|r, dc = ||0C||F.
We suppose that §4 is small enough so that the perturbed Lyapunov operator L4 g is
invertible for all E € C™*" with || E|r < d4. In this case there exists a unique solution
Y = X + §X of the perturbed Lyapunov equation

(2) LasaY):=(A+5ANY +Y(A+5A)=C +6C.
The aim of norm-wise perturbation analysis for equation (1) is to find a bound for the
quantity dx := [|0.X||r as a function of the perturbation vector § := [§¢,da]" € R2. A

number of perturbation results in this area are known.
Consider first the local perturbation analysis in which the bound is of the form
dx < w(@)+0([l8]*), 6 =0,

where w(8) = O(||6]), § — 0. Here the function w : R — Ry is first order homogeneous
in the sense that w(ad) = aw(d) for all « € R.

Equation (2) may be rewritten as an operator equation for X as
(3) 6X = L,1(60) — LM (ATX + X5A) — G(3A,6X),
where G(E,Z) = E"'Z + ZE. Keeping first order terms and taking the vec-operation
from both sides of (3) we get

z=Lc+ Ma+ Na+O(||6]%), 6§ — 0.
Here z := vec(0X), ¢ := vec(dC), a := vec(dA) and
L=, @ A"+ AT @ 1,) ", M:=—L(I, ® X), N := —L(X ® I,)L,p.
Having in mind that dx = ||z|2 we obtain
Sx <w(d)+O(||8]*), § — 0,
where
w(0) :=max {||Lc+ Ma+ Na||z: ||c]l2 < dc, |la|l2 < da}.
Furthermore, if 2||L||204 < 1, then the perturbation bound for dx is

w(9)
ox < f(d) i= ———.
* = O T,
Of course, having in mind that ||M ||z = || N||2, we can bound f;(d) from above as

w(d) < ||Ll[26¢ + 2([M|[20.4.
Unfortunately, this may give rather weak results.
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The quantity w(d) is obtained via an optimization procedure. It involves the operator
M CxEn X2 defined by M(a) = Ma + Na. This operator is additive,
M(a +b) = M(a) + M(b), but it is not homogeneous (M(Xa) # AM(a) if 0 # X ¢ R
and 0 # a ¢ R?™*2). These means that M is not a linear operator over the field C.
However, we can obtain a new real operator, associated with M (this operator so called a
realification of M), which is linear over the field R. Operators of this type are considered
in the next section.

3. Main results. Let the matrix function (or matrix operator) of matrix argument

F=[fig] X" — B
be given, where f;; : F™*"™ — F are scalar functions of matrix argument. By F T=] fiil
and FH = [f ji] we denote the operators, transposed and complex conjugate transposed
to the operator F, respectively. We also set F* for F' in the real case and for FH in
the complex case.

Every matrix operator F : F™*" — [FP*4 ig equivalent to a vector function f : F™" —
P4, Indeed, set

f(z) = vec(F(vec (),
where z := vec(X) and X = vec™!(z).

A complex operator F : C™*" — CP*? may be realificated, resulting in the equivalent
operator

]:]R S RMXN o RMXN L RPXA ¢ RPX4
as follows Let X = X + X7, € C™*" and
f(X) = fo(Xo, X1) + Zfl(Xo, Xl),
where X; € R™*™ and F;(Xp, X1) € RP*4. Then we may define the realified operator
FR via
FE(Xo, X1) = (Fo(Xo, X1), F1(Xo, X1)) € RPX x RPXY.

Sometimes it is convenient to write the realification F&(Xp, X1) of F(X) also as

Fo(Xo, X
FH(Xo, X1) = [ f?EXg XS ] € R?Px1,
For X as above set
R L VEC(X()) 2mn
vect(X) = [ vee(X1) ] e R,
R ._ Xo —Xu 2mx2n
Xt = { X, X, ] eR .

Next we shall use the realifications
vec®(AXB) = (B' ® A)Rvec®(Z) e R?9,

(BT & AF — B ® Ap— B ® Ay — (B] ® Ao+ B] ® 4)
| B/ ®Ao+B) ® A1 Bj ®Ay—B] ® A
and
vecR(Az):AR[io ] € R?,
1

where A € CP*™ X € C™*" B e C"*1 A; e RP*™ B; € R"%and z = 2o + 121 € C™;
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20,21 € R™. Hence, if £ € Lin(p,m,n,q,C) and Mat(L) € CP?*™" ig the matrix
representation of £, then

vec®(L(X)) = Mat®(£)vec®(X).

Definition 3.1. We recall [2] that the operator F : F™*" — FP*1 js additive if
F(X+Y)=F(X)+ F(Y), homogeneous if F(aX) = aX and semi-homogeneous if
FlaX) = aF(X) for all X, Y € F™*"™ and a € F. The operator F is linear if it is
additive and homogeneous,

FaX +BY) = aF(X) + BF(Y),
and semi-linear if it is additive and semi-homogeneous,

FlaX + BY) =aF(X) + BF(Y),
for all XY € F™*" and o, 5 € F.

In the real case F = R the properties of linearity and semi-linearity coincide. Also,

a complex semi-linear operator ‘becomes’ linear if we consider C™**™ as a linear space
over R instead of C. This is based on the observation that a linear space V over any
field F (including the space V = F) is also a linear space over any subfield E of F. If in

particular IF is a finite extension of E of degree k = [F : E| then the dimension of V' over
F is k times the dimension of V' over E.

A general operator £ € Lin(p, m,n, ¢, F) may be represented as
T
(4) L(X)=) AiXB,
i=1

where A; € FP*™ B, € F"*? are given matrix coefficients and r is the Sylvester index of
L, i.e., the minimum number of terms, required in the representation of £ as a sum of
elementary linear operators X +— A; X B;, see [3]. The matrix of the operator L is

T
Mat(£) = 3" B @ A; € Frxmn,
i=1

Similarly, a general semi-linear operator M : C™*™ — CP*? admits the representation
(5) M(X)=N(x") = Z C; XD,
with C; € CP*", B; € C™*4, or -
0 M(X) = £(X) = 3" AXB.
where N € Lin(p,n,m,q,C), L € Lin(p, m, n, ql,TCl) The realifications of (5) and (6) are

ved (M(X)) = Mat*(V) { ,“ﬁ”;,?iiﬁi% }

Mat® (R)diag (I, —ILnn ) vec®(X)

and

vec®(M(X)) = Mat® (V) diag (Inn, —Imn) vec® (X),
where X = Xg +1X; € C™*", Xy, X7 € R™*", Thus we may define the matrix of the
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realification M® of the semi-linear operator M as
Mat(M®) = Mat®(£)diag (Tnn, —ITmnn)
= Mat®(N)diag (Inn, —Lmn) -
Note that a semi-linear complex operator F is not differentiable. However, its reali-
fication F® is a linear operator. We note that if F is a linear operator, so is F ', while
FH is semi-linear.

Taking the vec-operation from both sides of the expressions (4) and (5) for a linear
or a semi-linear operator we get

vec(L(X)) = Lvec(X)
and
vec(M(X)) = LI, vec(X),
where
r
L:=Mat(£) := Y B ® A; € Fraxmn
i=1
is the matrix representation of the linear operator L.

We shall also deal with complex additive operators F, which may be represented as
sum of a linear and a semi-linear operator, i.e.,

F(X) = L1(X) + Lo(X ),
where £; € Lin(p,m, n, q,C), L5 € Lin(p,n, m,q,C). In this case we have
vec!(F(X)) = (Mat*(£1) + Mat™(£3)diag (T, ~Thn) ) vec® (X).

Therefore we shall define the matrix of the realification F® of the additive operator F as
Mat(F%) := MatR(ﬁl) + MatR(ﬁg)diag (s —pm ) -

Definition 3.2. The operator F = [f;;] is polynomial if its elements f;; : F"*" —F
are polynomial functions.

A polynomial operator F : F™*" — FP*4 ig globally Fréchet differentiable in the
sense that for each X € F"*" we have
FX+Y)=F(X)+ L(X,Y)+H(X,Y),
where £(X, ) € Lin(p, m,n, ¢, F) and
- JHX Y
lim ———
Y0 el

In this case the linear operator £(X,-) is referred to as the Fréchet derivative of F at
the point X and is denoted as Fx (X)(-) or briefly as Fx(-).

=0.

Definition 3.3. The complex operator F : C™*" — CP*? s said to be pseudo-
polynomial [1] if it may be represented as

(7) F(X) =6(x, x1),
where G : F™X™ x FX™ — [FPX4 g g polynomial operator.

Pseudo-polynomial operators are not differentiable, but their realifications are real
analytic operators. If F is the pseudo-polynomial operator, given by (7), we may define
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an additive operator F x(-) by
Fx(Y)=Gi(Y) +Ga(YM),
where Gy, is the partial Fréchet derivative of G(X1, X2) in X}, computed at X; = X,
X5 = X}, We have
FX+Y)=F(X)+Fx(Y) +H(X,Y),
where H(X,Y) = o(||Y])), Y — 0. Thus Fx(-) is an analogue to the Fréchet derivative in
case of pseudo-polynomial operators and is referred to as the Fréchet pseudo-derivative

of F at the point X. We also denote the pseudo-derivative as Fx(-). Whenever they
exist, the Fréchet derivative and pseudo-derivative are unique.

If || - |« and || - |g are Holder or Frobenius norms in FP*9 and F™*™, respectively,
then an induced norm of operators £ from Lin(p, m,n, ¢, F) is defined as
(8) £l := max{[| £(X)|o = | X[g = 1}.

F™*" is used, then

If the F-norm in
(9) [£]p = max{[[L(X)|r: [ X|r=1}
= max{|vec(L(X))]|2 : [[vec(X)||2 = 1}
= max{||Mat(L)vec(X)|2 : [[vec(X)|l2 = 1}
= [[Mat(L)]|2-

When the operator M is semi-linear, e.g., M(X) = N(XH), £ € Lin(p,n,m,q,C),
we may again define its norm via (8) and (9) and thus the induced norm of M is equal
to the induced norm of the underlying operator £. However, if the complex operator F
is only additive and not semi-linear or linear,

(10) F(X) = L1(X) + Lo(XT), £1 € Lin(p,m,n,q,C), Lo € Lin(p,n,m,q,C),
then the determination of its induced norm is more subtle. Let

Ly =Ly +1Ly1 € (Cpqun7 k=1,2,
be the matrix of the operator £Lj, where the matrices Ly; are real.

Definition 3.4. The Frobenius norm of the additive operator F, induced by the Frobe-
nius norm in C™*"™ and CP*4, is

[ Flr := max{[|F(X)[[r : | X][r <1}
We have
[ Fllp = max{|[vec(F(X))ll2 : [[vec(X)[]2 < 1}.

In view of the relations

vec(F(X)) = vec(L1(X))+ vec(La(XH))
= Lyvec(X) + Lall,,, vec(X)
we obtain
(11) [ Flle = (L1, La) := [ M (L1, Ls)||2-
Here
(12) M(Ly, Ly) = Mat(F%) = | D10 T L2ollmn - —=Lua+ Loa 1w

Lll + L21Hmn LlO - L20Hmn
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is the matrix of the realification F® of F. Thus we have proved the following result.

Proposition 3.1. The induced Frobenius norm of a complex additive operator F with
a representation (10) is equal to the induced Frobenius norm of its realification defined
via (11) and (12).

The results obtained in this section find a wide application in the perturbation anal-
ysis of complex Lyapunov and Riccati equations. Particular details will be published
elsewhere.
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AIVUTNBHU MATPUAYHUN OIIEPATOPU

M. KoucranTuuos, II. Ilerkos, II. I'y, ®. Mepman

Pasryenanm ca cBoiicTBaTra Ha €OHA KJIAaCa AAUTUBHU KOMILIEKCHH MATPUYHH OIle-
paTopu, KOUTO He Ca HEIIPEMEHHO JuHeWHH. B wacTHOCT, medmHUMpaHU ca HOPMH HA
TaKWUBA OmepaTopu. Te3m omepaTopu BB3HUKBAT IPU NePTYypOAIMOHHUS AHAIN3 HA
KOMIJIEKCHI CUMETPUYHU aare6pUYHN MATPUYHU yPaBHEHUS, HAIPUMeD yDaBHEHUS
Ha JlanyHoB, ypaBHeHus Ha Puxartu, aconmunpanu ypaBaenus Ha Pukatu u np. Iloxa-
3aHO € IMPUJIOXKEHMETO HA MOJIyUYEeHHUTE PE3yJITATH NPHU HepTypPOAINOHHUS aHAIN3 HA
CTAaHIAPTHOTO HEIPEKHCHATO yPaBHeHUe Ha JIAIyHOB.
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