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Let M and R be sets of variables of the function f(x1, x2, . . . , xn) ∈ P k

n , where P k

n is
the set of all k-valued functions of n variables. In this article the number of functions
f ∈ P k

n is found, for which

• the set M is separable for f ;

• the set M is c-separable for f ;

• each subfunction of f with variables from the set M takes all the values of the
function;

• the set M with respect to R for the function f has a given spectrum;

• the set M with respect to R for the function f has a given c-spectrum etc.

The method of counting could be used for “construction” of the considered functions,
as well.

Let P k
n = {f : An → A/A = {0, 1, . . . , k − 1}} be the set of all k-valued functions of

n variables.

Definition 1. ([2])The number of different values of f , is called range of f .

We will denote the range of function f by Rng(f).
Let Xf = {x1, x2, . . . , xn} for f(x1, x2, . . . , xn) ∈ P k

n .
Let λn = |An| = kn be the number of all tuples of constants for the variables of

f(x1, x2, . . . , xn) ∈ P k
n , and µn = |P k

n | = kλ = kkn

be the number of all functions from
P k

n .
Let q ∈ {1, 2, . . . , k} and µk

n(q) be the number of functions from P k
n with range q.

Using [1] and [2], for µk
n(q) we have

(1) µk
n(q) = Cq

k .
∑

r1+r2+...+rq=kn

ri≥1, i=1,2,...,q

kn!

r1!r2! . . . rq !

or

(2) µk
n(q) = Cq

k

q
∑

s=1

(−1)q−sCs
qskn

.
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Let

(3) µk
n(0) = 0.

Definition 2. A function g is called subfunction of f ∈ P k
n with respect to M if g

is obtained from f by replacing the variables in the set M ⊂ Xf with constants, and we

write

g
M
≺ f.

Definition 3. ([2])Let M ⊂ Xf be a set of variables and g be a subfunction of f
with respect to the set Xf \ M . The range of g is called range of M for f with respect

to g, which is denoted by Rng(M, f ; g), and

Rng(M, f ; g) = Rng(g).

Let G be the set of all subfunctions of f with respect to Xf\M , i.e. G={g : g
Xf\M

≺ f}.

Definition 4. ([2])The set Spr(M, f) = ∪g∈G{Rng(M, f ; g)} = ∪g∈G{Rng(g)} is

called spectrum of the set M with respect to f .

Obviously Spr(M, f) ⊆ {1, 2, . . . , k}.

Definition 5. ([2]) max Spr(M, f) is called range of M with respect to f .

By Rng(M, f) we denote the range of M for f as

Rng(M, f) = maxSpr(M, f) = max
g∈G

{Rng(M, f ; g)} = max
g∈G

{Rng(g)}.

Let Qn,k be the number of functions from P k
n , which have a property Q, i.e. Q fully

describes the Qn,k.

Theorem 1. If M ⊂ Xf , |M | = m > 0 then the number of functions f ∈ P k
n , for

which

1.1) each subfunction g
Xf\M

≺ f has the property Q is

(4) [Qm,k]k
n−m

;

1.2) there is a subfunction g
Xf\M

≺ f , which has the property Q is

(5) kkn

− [kkm

− Qm,k]k
n−m

.

Proof 1.1. Let Xf \ M = {xj1 , xj2 , . . . , xjn−m
}. Let us denote all possible tuples

of constants for the variables from Xf \ M by {ci
1, c

i
2, . . . , c

i
n−m}, i = 1, 2, . . . , kn−m. If

gi = f(xj1 = ci
1, xj2 = ci

2, . . . , xjn−m
= ci

n−m), then gi ∈ P k
m, i = 1, 2, . . . , kn−m.

The number of functions from P k
m, which have a property Q, is Qm,k. The tabular

presentation of f can be viewed as kn−m tables with m rows, which are the tabular
presentations of the functions gi, i = 1, 2, . . . , kn−m.

In view of the fact that every subfunction gi must have the property Q and can be
chosen among Qm,k, then the number of different functions f , for which every subfunction

g
Xf\M

≺ f has the property Q is

[Qm,k]k
n−m

.
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Proof 1.2. Let us denote by Tn,k = kkn

− Qn,k the number of functions from P k
n ,

which do not have the property Q. From T1, (4) it follows that the number of functions

f ∈ P k
n , for which each subfunction g

Xf\M

≺ f does not have the property Q, is

[Tm,k]k
n−m

= [kkm

−Qm,k]k
n−m

.

It is evident that kkn

− [kkm

− Qm,k]k
n−m

is the number of functions f ∈ P k
n , for

which there is at least one subfunction g
Xf\M

≺ f with the property Q.

If Q is exactly the property of functions f for which Rng (f) = q, then from Qn,k =
µk

n(q) and Theorem 1, (4) we obtain Theorem 2.3 from [2]:

Corollary 1. If M ⊂ Xf , |M | = m > 0 then the number of functions f ∈ P k
n for

which Rng(M, f ; g) = q, q ≤ k, for all g
Xf\M

≺ f is

(6)
[

µk
m (q)

]kn−m

.

Definition 6. ([3])A variable xi is called essential for the function f ∈ P k
n if there

exist values c1, . . . , ci−1, ci+1, . . . , cn such that the function f(c1, . . . , ci−1, xi, ci+1, . . . , cn)
assumes at least two different values.

Definition 7. ([3])A set M of variables is called separable for the function f if there

exist a subfunction g
Xf\M

≺ f which depends on all variables from M .

[4] Taking into consideration that Qn,k =

n
∑

j=0

(−1)jCj
nkkn−j

is the number of functions

from P k
n which depend essentially on all their variables (property Q), Definition 7 and

Theorem 1, (5) we obtain

Corollary 2. If M ⊂ Xf , |M | = m > 0, then the number of functions f ∈ P k
n for

which M is separable is

(7) kkn

−





m
∑

j=1

(−1)j+1Cj
mkkm−j





kn−m

.

Definition 8. ([3])A set M of essential variables for f is called c-separable if each

subfunction g
Xf\M

≺ f depends on the variables in M .

Corollary 3. If M ⊂ Xf , |M | = m > 0, then the number of functions f ∈ P k
n for

which M is c-separable is

(8)





m
∑

j=0

(−1)jCj
mkkm−j





kn−m

.

Of particular interest are the functions f ∈ P k
n , for which every subfunction g ∈ G

takes as many different values as the function f itself.
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Theorem 2. If ∅ 6= M ⊂ Xf , |M | = m, then the number of functions f ∈ P k
n for

which Rng(f) =Rng(M, f ; g) = q, q ≤ k, for all g, g ∈ G is

(9) Cq
k

[

µk
m(q)

Cq
k

]kn−m

= Cq
k

[

q
∑

s=1

(−1)q−sCs
q skm

]kn−m

.

Proof. From Rng(f) =Rng(M, f ; g) = q it follows that each subfunction g ∈ G and
the function f assume the same q values.

If we choose q, q ≤ k, values that can be assumed by each function from P k
n , then

from (1) it follows that the number of functions from P k
n which assume the chosen q

values (property Q) is
∑

r1+r2+...+rq=kn

ri≥1, i=1,2,...,q

kn!

r1!r2! . . . rq !
=

µk
n (q)

Cq
k

= Qn,k.

The proof is obtained by applying Theorem 1, (4) to the number of functions from P k
n

for which each subfunction g ∈ G assumes the chosen q values (property Q) and taking
into consideration that q values can be chosen among k values in Cq

k ways.

Theorem 3. If ∅ 6= M ⊂ Xf , |M | = m then the number of functions f ∈ P k
n for

which Rng(f) =Rng(M, f) = q, 1 ≤ q ≤ k is

(10) Cq
k







[

q
∑

i=1

Ci
q

Ci
k

µk
m(i)

]kn−m

−

[

q−1
∑

i=0

Ci
q

Ci
k

µk
m(i)

]kn−m





.

Proof. Number of functions f ∈ P k
n , that assume at most q (q ≤ k) fixed values

(property Q) is

q
∑

i=1

Ci
q

Ci
k

µk
n(i) = Qn,k. It follows from Theorem 1, (4) that the number of

functions from P k
n for which every subfunction g ∈ G assumes at most q fixed values is

α =

[

q
∑

i=1

Ci
q

Ci
k

µk
m(i)

]kn−m

.

Obviously β =

[

q−1
∑

i=1

Ci
q

Ci
k

µk
m (i)

]kn−m

is the number of functions from P k
n for which

every subfunction g ∈ G assumes at most q − 1 among the fixed q, q > 1 values, or

β =

[

q−1
∑

i=0

Ci
q

Ci
k

µk
m (i)

]kn−m

when q ≥ 1.

Taking into consideration that q values among k values can be chosen in Cq
k ways and

that α− β is the number of functions from P k
n , for which at least one subfunction g ∈ G

assumes all q fixed values, i.e. the functions for which Rng(f) =Rng(M, f) = q, we get
the proof of Theorem 3.

Let M 6= ∅ and R 6= ∅ be two sets of variables for the function f ∈ P k
n , where M 6⊂ R

and H be the set of all subfunctions of f with respect to R, i.e. H = {h : h
R
≺ f}.
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Definition 9. ([2])The range of M with respect to R of the function f with a

subfunction h is the range of the set M \ R with respect to the function h.

The range of the set M with respect to R of the function f with a subfunction h
will be denoted by Rng(M ; R, f ; h) where Rng(M ; R, f ; h) =Rng(M\R, h).

Definition 10. ([2])The set Spr(M ; R, f) = ∪h∈H{Rng(M ; R, f ; h)} is spectrum

of the set M with respect to R for f .

Obviously Spr(M ; R, f) ⊆ {1, 2, . . . , k}.

Definition 11.Let C-Spr(M ; R, f) be the set {1p1 , 2p2 , . . . , kpk}, where pt, t =
1, . . . , k is the number of all the different tuples of constants for the variables of R,

for which from f subfunctions can be obtained, with respect to which the set of variables

M\R has range equal to t.

It is obvious that p1 + p2 + . . . + pk = λ|R| = k|R|, where pt ≥ 0, t = 1, . . . , k.

Theorem 4. If M ⊂ Xf , R ⊂ Xf , |M | = m, |R| = r, |M ∩ R| = s, then the number

of functions f ∈ P k
n , for which C-Spr(M ; R, f) = {1p1 , 2p2 , . . . , kpk}, is

(11)
kr!

p1!p2! . . . pk!
.αp1

1 .αp2

2 . . . αpk

k ,

where α1=kkn+s−m−r

, αt=

[

t
∑

i=1

µk
m−s (i)

]kn+s−m−r

−

[

t−1
∑

i=1

µk
m−s (i)

]kn+s−m−r

for t>1.

Proof. Associate the number t with each tuple of constants for the variables of R, for
which from f subfunctions can be obtained, with respect to which M\R has range equal
to t. The number of all the different associations, where with p1 tuples of constants we
associate 1, with p2 tuples of constants we associate 2, . . ., with pk tuples of constants
we associate k, is

(p1 + p2 + . . . + pk)!

p1!p2! . . . pk!
=

kr!

p1!p2!...pk!
.

To each number t, a subfunction from P k
n−r corresponds with respect to which M\R

(|M\R| = m−s) has range equal to t. Taking into consideration that these subfunctions

can be chosen for t = 1 ([2], Corollary 2.3 ) in α1 = kkn+s−m−r

different ways, and for

t > 1 ([2], Theorem 2.4) in αt =

[

t
∑

i=1

µk
m−s (i)

]kn+s−m−r

−

[

t−1
∑

i=1

µk
m−s (i)

]kn+s−m−r

ways,

we obtain the proof of the theorem.

Theorem 5. If M ⊂ Xf , R ⊂ Xf , |M | = m, |R| = r, |M ∩ R| = s, then the number

of functions f ∈ P k
n , for which Spr(M ; R, f) = {q1, q2, . . . , qj}, j ≤ k, is

(12)
∑

r1+r2+...+rj=kr

rt≥1, t=1,2,...,j

kr!

r1!r2! . . . rj !
.ρr1

1 .ρr2

2 . . . ρ
rj

j ,

where ρt =

[

qt
∑

i=1

µk
m−s (i)

]kn+s−m−r

−

[

qt−1
∑

i=0

µk
m−s (i)

]kn+s−m−r

, t = 1, . . . , j.
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Proof. Let us denote by rt the number of all different tuples of constants for the
variables from R, for which from f subfunctions can be obtained, with respect to which
the set of variables M\R has range equal to qt, t = 1, 2, . . . , j.

In this case, for f we have C-Spr(M ; R, f) = {qr1

1 , qr2

2 , . . . , q
rj

j }.
Taking into consideration the fact that each function f for which C-Spr(M ; R, f) =

{qr1

1
, qr2

2
, . . . , q

rj

j }, where r1+r2+. . .+rj = kr, rt ≥ 1, t = 1, 2, . . . , j, has Spr(M ; R, f) =
{q1, q2, . . . , qj}, and (3) and applying Theorem 4, we get the proof of Theorem 5.

When R = Xf\M , we have Spr(M ; R, f) =Spr(M ; Xf\M, f) =Spr(M, f). By
applying Theorem 4 (Theorem 5) in this special case, we obtain the number of functions
f ∈ P k

n , for which C-Spr(M, f) = {1p1 , 2p2 , . . . , kpk}, (Spr(M, f) = {q1, q2, . . . , qj},
j ≤ k), where M ⊂ Xf , |M | = m > 0, |R| = r = n − m, |M ∩ R| = s = 0.
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