МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2001 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001 Proceedings of Thirtieth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 8-11, 2001

ON THE NUMBER OF SOME k-VALUED FUNCTIONS OF n VARIABLES^{*}

Dimiter St. Kovachev

Let M and R be sets of variables of the function $f(x_1, x_2, \ldots, x_n) \in P_n^k$, where P_n^k is the set of all k-valued functions of n variables. In this article the number of functions $f \in P_n^k$ is found, for which

- the set M is **separable** for f;
- the set *M* is **c-separable** for *f*;
- each subfunction of f with variables from the set M takes all the values of the function;
- the set M with respect to R for the function f has a given **spectrum**;
- the set M with respect to R for the function f has a given **c-spectrum** etc.

The method of counting could be used for "construction" of the considered functions, as well.

Let $P_n^k = \{f : A^n \to A/A = \{0, 1, \dots, k-1\}\}$ be the set of all k-valued functions of n variables.

Definition 1. ([2]) The number of different values of f, is called range of f.

We will denote the **range** of function f by $\mathbf{Rng}(f)$.

Let $X_f = \{x_1, x_2, \dots, x_n\}$ for $f(x_1, x_2, \dots, x_n) \in P_n^k$. Let $\lambda_n = |A^n| = k^n$ be the number of all tuples of constants for the variables of $f(x_1, x_2, \dots, x_n) \in P_n^k$, and $\mu_n = |P_n^k| = k^{\lambda} = k^{k^n}$ be the number of all functions from P_n^k .

Let $q \in \{1, 2, ..., k\}$ and $\mu_n^k(q)$ be the number of functions from P_n^k with range q. Using [1] and [2], for $\mu_n^k(q)$ we have

(1)
$$\mu_n^k(q) = C_k^q. \sum_{\substack{r_1+r_2+\ldots+r_q=k^n\\r_i \ge 1, i=1,2,\ldots,q}} \frac{k^{n!}}{r_1!r_2!\ldots r_q!}$$

or

(2)
$$\mu_n^k(q) = C_k^q \sum_{s=1}^q (-1)^{q-s} C_q^s s^{k^n}.$$

^{*}1991 Mathematics Subject Classification: 03B50, 04A20, 05A05, 05A10, 05A18; Keywords: Functions of k-valued logic, range of a function, subfunction, separable sets, essential variables. 176

Let

(3)
$$\mu_n^k(0) = 0.$$

Definition 2. A function g is called subfunction of $f \in P_n^k$ with respect to M if g is obtained from f by replacing the variables in the set $M \subset X_f$ with constants, and we write

 $g \stackrel{M}{\prec} f.$

Definition 3. ([2]) Let $M \subset X_f$ be a set of variables and g be a subfunction of f with respect to the set $X_f \setminus M$. The **range** of g is called **range** of M for f with respect to g, which is denoted by $\mathbf{Rng}(M, f; g)$, and

$$Rng(M, f; g) = Rng(g).$$

Let G be the set of all subfunctions of f with respect to $X_f \setminus M$, i.e. $G = \{g : g \xrightarrow{X_f \setminus M} f\}$. **Definition 4.** ([2]) The set $Spr(M, f) = \bigcup_{g \in G} \{Rng(M, f; g)\} = \bigcup_{g \in G} \{Rng(g)\}$ is called spectrum of the set M with respect to f.

Obviously $\mathbf{Spr}(M, f) \subseteq \{1, 2, \dots, k\}.$

Definition 5. ([2]) max Spr(M, f) is called range of M with respect to f.

By $\mathbf{Rng}(M, f)$ we denote the **range** of M for f as

$$\mathbf{Rng}(M, f) = \max \mathbf{Spr}(M, f) = \max_{g \in G} \{\mathbf{Rng}(M, f; g)\} = \max_{g \in G} \{\mathbf{Rng}(g)\}.$$

Let $\mathbf{Q}_{n,k}$ be the number of functions from P_n^k , which have a property \mathbf{Q} , i.e. \mathbf{Q} fully describes the $\mathbf{Q}_{n,k}$.

Theorem 1. If $M \subset X_f$, |M| = m > 0 then the number of functions $f \in P_n^k$, for which

1.1) each subfunction $g \stackrel{X_f \setminus M}{\prec} f$ has the property Q is

(4)
$$[\boldsymbol{Q}_{m,k}]^{k^{n-m}};$$

1.2) there is a subfunction
$$g \stackrel{n_f \ (m)}{\prec} f$$
, which has the property \boldsymbol{Q} is
(5) $k^{k^n} - [k^{k^m} - \boldsymbol{Q}_{m,k}]^{k^{n-m}}.$

Proof 1.1. Let $X_f \setminus M = \{x_{j_1}, x_{j_2}, \ldots, x_{j_{n-m}}\}$. Let us denote all possible tuples of constants for the variables from $X_f \setminus M$ by $\{c_1^i, c_2^i, \ldots, c_{n-m}^i\}$, $i = 1, 2, \ldots, k^{n-m}$. If $g_i = f(x_{j_1} = c_1^i, x_{j_2} = c_2^i, \ldots, x_{j_{n-m}} = c_{n-m}^i)$, then $g_i \in P_m^k$, $i = 1, 2, \ldots, k^{n-m}$. The number of functions from P_m^k , which have a property \mathbf{Q} , is $\mathbf{Q}_{m,k}$. The tabular

The number of functions from P_m^k , which have a property \mathbf{Q} , is $\mathbf{Q}_{m,k}$. The tabular presentation of f can be viewed as k^{n-m} tables with m rows, which are the tabular presentations of the functions g_i , $i = 1, 2, \ldots, k^{n-m}$.

In view of the fact that every subfunction g_i must have the property \mathbf{Q} and can be chosen among $\mathbf{Q}_{m,k}$, then the number of different functions f, for which every subfunction $g \stackrel{X_f \setminus M}{\prec} f$ has the property \mathbf{Q} is

$$\left[\mathbf{Q}_{m,k}
ight]^{k^{n-m}}.$$

177

Proof 1.2. Let us denote by $\mathbf{T}_{n,k} = k^{k^n} - \mathbf{Q}_{n,k}$ the number of functions from P_n^k , which do not have the property \mathbf{Q} . From T1, (4) it follows that the number of functions $f \in P_n^k$, for which each subfunction $g \stackrel{X_f \setminus M}{\prec} f$ does not have the property \mathbf{Q} , is

$$[\mathbf{T}_{m,k}]^{k^{n-m}} = [k^{k^m} - \mathbf{Q}_{m,k}]^{k^{n-m}}$$

It is evident that $k^{k^n} - [k^{k^m} - \mathbf{Q}_{m,k}]^{k^{n-m}}$ is the number of functions $f \in P_n^k$, for which there is at least one subfunction $g \stackrel{X_f \setminus M}{\prec} f$ with the property \mathbf{Q} .

If **Q** is exactly the property of functions f for which **Rng** (f) = q, then from $\mathbf{Q}_{n,k} = \mu_n^k(q)$ and Theorem 1, (4) we obtain Theorem 2.3 from [2]:

Corollary 1. If $M \subset X_f$, |M| = m > 0 then the number of functions $f \in P_n^k$ for which $\operatorname{Rng}(M, f; g) = q$, $q \leq k$, for all $g \stackrel{X_f \setminus M}{\prec} f$ is (6) $\left[\mu_m^k(q) \right]^{k^{n-m}}$.

Definition 6. ([3]) A variable x_i is called **essential** for the function $f \in P_n^k$ if there exist values $c_1, \ldots, c_{i-1}, c_{i+1}, \ldots, c_n$ such that the function $f(c_1, \ldots, c_{i-1}, x_i, c_{i+1}, \ldots, c_n)$ assumes at least two different values.

Definition 7. ([3]) A set M of variables is called separable for the function f if there exist a subfunction $g \stackrel{X_f \setminus M}{\prec} f$ which depends on all variables from M.

[4] Taking into consideration that $\mathbf{Q}_{n,k} = \sum_{j=0}^{n} (-1)^{j} C_{n}^{j} k^{k^{n-j}}$ is the number of functions from P_{n}^{k} which depend essentially on all their variables (property **Q**), Definition 7 and Theorem 1, (5) we obtain

Corollary 2. If $M \subset X_f$, |M| = m > 0, then the number of functions $f \in P_n^k$ for which M is separable is

(7)
$$k^{k^{n}} - \left[\sum_{j=1}^{m} (-1)^{j+1} C_{m}^{j} k^{k^{m-j}}\right]^{k^{n-m}}$$

Definition 8. ([3]) A set M of essential variables for f is called *c*-separable if each subfunction $g \stackrel{X_f \setminus M}{\prec} f$ depends on the variables in M.

Corollary 3. If $M \subset X_f$, |M| = m > 0, then the number of functions $f \in P_n^k$ for which M is **c-separable** is

(8)
$$\left[\sum_{j=0}^{m} (-1)^{j} C_{m}^{j} k^{k^{m-j}}\right]^{k^{n-m}}.$$

Of particular interest are the functions $f \in P_n^k$, for which every subfunction $g \in G$ takes as many different values as the function f itself. 178 **Theorem 2.** If $\emptyset \neq M \subset X_f$, |M| = m, then the number of functions $f \in P_n^k$ for which $\mathbf{Rng}(f) = \mathbf{Rng}(M, f; g) = q$, $q \leq k$, for all $g, g \in G$ is

(9)
$$C_k^q \left[\frac{\mu_m^k(q)}{C_k^q}\right]^{k^{n-m}} = C_k^q \left[\sum_{s=1}^q (-1)^{q-s} C_q^s s^{k^m}\right]^{k^{n-m}}.$$

Proof. From $\operatorname{Rng}(f) = \operatorname{Rng}(M, f; g) = q$ it follows that each subfunction $g \in G$ and the function f assume the same q values.

If we choose $q, q \leq k$, values that can be assumed by each function from P_n^k , then from (1) it follows that the number of functions from P_n^k which assume the chosen qvalues (property **Q**) is

$$\sum_{\substack{r_1+r_2+\ldots+r_q=k^n\\r_i \ge 1, i=1,2,\ldots,q}} \frac{k^n!}{r_1!r_2!\ldots r_q!} = \frac{\mu_n^k(q)}{C_k^q} = \mathbf{Q}_{n,k}.$$

The proof is obtained by applying Theorem 1, (4) to the number of functions from P_n^k for which each subfunction $g \in G$ assumes the chosen q values (property **Q**) and taking into consideration that q values can be chosen among k values in C_k^q ways.

Theorem 3. If $\emptyset \neq M \subset X_f$, |M| = m then the number of functions $f \in P_n^k$ for which Rng(f) = Rng(M, f) = q, $1 \leq q \leq k$ is

(10)
$$C_{k}^{q} \left\{ \left[\sum_{i=1}^{q} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i) \right]^{k^{n-m}} - \left[\sum_{i=0}^{q-1} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i) \right]^{k^{n-m}} \right\}$$

Proof. Number of functions $f \in P_n^k$, that assume at most $q \ (q \le k)$ fixed values (property **Q**) is $\sum_{i=1}^q \frac{C_q^i}{C_k^i} \mu_n^k(i) = \mathbf{Q}_{n,k}$. It follows from Theorem 1, (4) that the number of functions from P_n^k for which every subfunction $g \in G$ assumes at most q fixed values is $\alpha = \left[\sum_{i=1}^q \frac{C_q^i}{C_k^i} \mu_m^k(i)\right]^{k^{n-m}}$.

Obviously $\beta = \left[\sum_{i=1}^{q-1} \frac{C_q^i}{C_k^i} \mu_m^k(i)\right]^{k^{n-m}}$ is the number of functions from P_n^k for which every subfunction $g \in G$ assumes at most q-1 among the fixed q, q > 1 values, or $\beta = \left[\sum_{i=0}^{q-1} \frac{C_q^i}{C_k^i} \mu_m^k(i)\right]^{k^{n-m}}$ when $q \ge 1$.

Taking into consideration that q values among k values can be chosen in C_k^q ways and that $\alpha - \beta$ is the number of functions from P_n^k , for which at least one subfunction $g \in G$ assumes all q fixed values, i.e. the functions for which $\operatorname{\mathbf{Rng}}(f) = \operatorname{\mathbf{Rng}}(M, f) = q$, we get the proof of Theorem 3.

Let $M \neq \emptyset$ and $R \neq \emptyset$ be two sets of variables for the function $f \in P_n^k$, where $M \not\subset R$ and H be the set of all subfunctions of f with respect to R, i.e. $H = \{h : h \stackrel{R}{\prec} f\}$.

179

Definition 9. ([2]) The range of M with respect to R of the function f with a subfunction h is the range of the set $M \setminus R$ with respect to the function h.

The **range** of the set M with respect to R of the function f with a subfunction h will be denoted by $\mathbf{Rng}(M; R, f; h)$ where $\mathbf{Rng}(M; R, f; h) = \mathbf{Rng}(M \setminus R, h)$.

Definition 10. ([2]) The set $Spr(M; R, f) = \bigcup_{h \in H} \{Rng(M; R, f; h)\}$ is spectrum of the set M with respect to R for f.

Obviously $\mathbf{Spr}(M; R, f) \subseteq \{1, 2, \dots, k\}.$

Definition 11. Let C-Spr(M; R, f) be the set $\{1^{p_1}, 2^{p_2}, \ldots, k^{p_k}\}$, where p_t , $t = 1, \ldots, k$ is the number of all the different tuples of constants for the variables of R, for which from f subfunctions can be obtained, with respect to which the set of variables $M \setminus R$ has range equal to t.

It is obvious that $p_1 + p_2 + ... + p_k = \lambda_{|R|} = k^{|R|}$, where $p_t \ge 0, t = 1, ..., k$.

Theorem 4. If $M \subset X_f$, $R \subset X_f$, |M| = m, |R| = r, $|M \cap R| = s$, then the number of functions $f \in P_n^k$, for which C-Spr $(M; R, f) = \{1^{p_1}, 2^{p_2}, \ldots, k^{p_k}\}$, is

(11)
$$\frac{k!}{p_1!p_2!\dots p_k!} \cdot \alpha_1^{p_1} \cdot \alpha_2^{p_2} \dots \alpha_k^{p_k},$$

where
$$\alpha_1 = k^{k^{n+s-m-r}}$$
, $\alpha_t = \left[\sum_{i=1}^t \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}} - \left[\sum_{i=1}^{t-1} \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}}$ for $t > 1$.

Proof. Associate the number t with each tuple of constants for the variables of R, for which from f subfunctions can be obtained, with respect to which $M \setminus R$ has range equal to t. The number of all the different associations, where with p_1 tuples of constants we associate 1, with p_2 tuples of constants we associate 2, ..., with p_k tuples of constants we associate k, is

$$\frac{(p_1+p_2+\ldots+p_k)!}{p_1!p_2!\ldots p_k!} = \frac{k^r!}{p_1!p_2!\ldots p_k!}.$$

To each number t, a subfunction from P_{n-r}^k corresponds with respect to which $M \setminus R$ $(|M \setminus R| = m - s)$ has range equal to t. Taking into consideration that these subfunctions can be chosen for t = 1 ([2], Corollary 2.3) in $\alpha_1 = k^{k^{n+s-m-r}}$ different ways, and for t > 1 ([2], Theorem 2.4) in $\alpha_t = \left[\sum_{i=1}^t \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}} - \left[\sum_{i=1}^{t-1} \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}}$ ways, we obtain the proof of the theorem.

Theorem 5. If $M \subset X_f$, $R \subset X_f$, |M| = m, |R| = r, $|M \cap R| = s$, then the number of functions $f \in P_n^k$, for which $Spr(M; R, f) = \{q_1, q_2, \ldots, q_j\}, j \leq k$, is

(12)
$$\sum_{\substack{r_1+r_2+\ldots+r_j=k^r\\r_t\ge 1,\ t=1,2,\ldots,j}} \frac{k^{r_1!}}{r_1!r_2!\ldots r_j!} \cdot \rho_1^{r_1} \cdot \rho_2^{r_2} \ldots \rho_j^{r_j},$$

where
$$\rho_t = \left[\sum_{i=1}^{q_t} \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}} - \left[\sum_{i=0}^{q_t-1} \mu_{m-s}^k(i)\right]^{k^{n+s-m-r}}, t = 1, \dots, j.$$
180

Proof. Let us denote by r_t the number of all different tuples of constants for the variables from R, for which from f subfunctions can be obtained, with respect to which the set of variables $M \setminus R$ has range equal to $q_t, t = 1, 2, \ldots, j$.

In this case, for f we have \mathbf{C} - $\mathbf{Spr}(M; R, f) = \{q_1^{r_1}, q_2^{r_2}, \dots, q_j^{r_j}\}$. Taking into consideration the fact that each function f for which \mathbf{C} - $\mathbf{Spr}(M; R, f) =$ $\{q_1^{r_1}, q_2^{r_2}, \dots, q_j^{r_j}\}$, where $r_1 + r_2 + \dots + r_j = k^r$, $r_t \ge 1, t = 1, 2, \dots, j$, has **Spr**(M; R, f) = $\{q_1, q_2, \ldots, q_j\}$, and (3) and applying Theorem 4, we get the proof of Theorem 5.

When $R = X_f \setminus M$, we have $\mathbf{Spr}(M; R, f) = \mathbf{Spr}(M; X_f \setminus M, f) = \mathbf{Spr}(M, f)$. By applying Theorem 4 (Theorem 5) in this special case, we obtain the number of functions $f \in P_n^k$, for which \mathbf{C} - $\mathbf{Spr}(M, f) = \{1^{p_1}, 2^{p_2}, \dots, k^{p_k}\}, (\mathbf{Spr}(M, f) = \{q_1, q_2, \dots, q_j\},$ $j \leq k$, where $M \subset X_f$, |M| = m > 0, |R| = r = n - m, $|M \cap R| = s = 0$.

REFERENCES

[1] V. N. SACHKOV. Introduction into combinatorial methods of discrete mathematics. Moscow, Nauka, 1982.

[2] D. ST. KOVACHEV. On the number of discrete functions with a given range. In: General algebra and applications, Proceedings of the 59-th Workshop on general algebra, Potsdam 2000, (Eds K. Denecke, H.-J. Vogel), 125-134.

[3] SL. VL. SHTRAKOV. Separable sets of variables and s-sistems. In: Research in Mathematics, Vol. 5, Discrete Mathematics and Applications, Blagoevgrad, 1995, (Eds Sl. Shtrakov, Iv. Mirchev), 61-67.

[4] K. N. CHIMEV, I. D. GYUDJENOV. Subfunctions and cardinality of some classes of functions. Blagoevgrad, 1987, 65. (К. Н. Чимев, И. Д. Гюдженов, Подфункции и мощност на някои класи функции. Благоевград, 1987).

[5] M. EIGNER. Combinatorial Theory. New York, 1979.

Dimiter Stoichkov Kovachev Department of Computer Sciences South-West University "Neofit Rilski" P.O. 79, 2700 Blagoevgrad, Bulgaria e-mail: dkovach@aix.swu.bg

ВЪРХУ БРОЯ НА НЯКОИ *к*-ЗНАЧНИ ФУНКЦИИ НА п ПРОМЕНЛИВИ

Димитър Стоичков Ковачев

Нека M и R са множества от аргументи на функцията $f(x_1, x_2, \ldots, x_n) \in P_n^k$ където P_n^k е множеството от всички k-значни функции на n променливи. В тази статия е намерен е броят на функции $f \in P_n^k$, за които

- множеството M е отделимо за f;
- множеството M е с-отделимо за f;
- всяка подфункция на f, с аргументи множеството M, приема стойностите на функцията;
- множеството *M* относно *R* за функцията *f* има даден спектър;
- множеството M относно R за функцията f има даден **с**-спектър и др.

Начина на преброяване може да послужи и за "конструиране" на разгледаните функции.