ON THE NUMBER OF SOME k-VALUED FUNCTIONS OF n VARIABLES*

Dimiter St. Kovachev

Let M and R be sets of variables of the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$, where P_{n}^{k} is the set of all k-valued functions of n variables. In this article the number of functions $f \in P_{n}^{k}$ is found, for which

- the set M is separable for f;
- the set M is c-separable for f;
- each subfunction of f with variables from the set M takes all the values of the function;
- the set M with respect to R for the function f has a given spectrum;
- the set M with respect to R for the function f has a given c-spectrum etc.

The method of counting could be used for "construction" of the considered functions, as well.

Let $P_{n}^{k}=\left\{f: A^{n} \rightarrow A / A=\{0,1, \ldots, k-1\}\right\}$ be the set of all k-valued functions of n variables.

Definition 1. ([2]) The number of different values of f, is called range of f.
We will denote the range of function f by $\operatorname{Rng}(f)$.
Let $X_{f}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$.
Let $\lambda_{n}=\left|A^{n}\right|=k^{n}$ be the number of all tuples of constants for the variables of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$, and $\mu_{n}=\left|P_{n}^{k}\right|=k^{\lambda}=k^{k^{n}}$ be the number of all functions from P_{n}^{k}.

Let $q \in\{1,2, \ldots, k\}$ and $\mu_{n}^{k}(q)$ be the number of functions from P_{n}^{k} with range \mathbf{q}. Using [1] and [2], for $\mu_{n}^{k}(q)$ we have

$$
\begin{equation*}
\mu_{n}^{k}(q)=C_{k}^{q} \cdot \sum_{\substack{r_{1}+r_{2}+\ldots+r_{q}=k^{n} \\ r_{i} \geq 1, i=1,2, \ldots, q}} \frac{k^{n}!}{r_{1}!r_{2}!\ldots r_{q}!} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu_{n}^{k}(q)=C_{k}^{q} \sum_{s=1}^{q}(-1)^{q-s} C_{q}^{s} s^{k^{n}} \tag{2}
\end{equation*}
$$

[^0]Let

$$
\begin{equation*}
\mu_{n}^{k}(0)=0 . \tag{3}
\end{equation*}
$$

Definition 2. A function g is called subfunction of $f \in P_{n}^{k}$ with respect to M if g is obtained from f by replacing the variables in the set $M \subset X_{f}$ with constants, and we write

$$
g \stackrel{M}{\prec} f .
$$

Definition 3. ([2]) Let $M \subset X_{f}$ be a set of variables and g be a subfunction of f with respect to the set $X_{f} \backslash M$. The range of g is called range of M for f with respect to g, which is denoted by $\boldsymbol{\operatorname { R n g }}(M, f ; g)$, and

$$
\boldsymbol{\operatorname { R n g }}(M, f ; g)=\boldsymbol{R} \boldsymbol{n g}(g)
$$

Let G be the set of all subfunctions of f with respect to $X_{f} \backslash M$, i.e. $G=\left\{g: g{ }^{X_{f} \backslash M} f\right\}$.
Definition 4. ([2]) The set $\boldsymbol{\operatorname { S p r }}(M, f)=\cup_{g \in G}\{\boldsymbol{R} \boldsymbol{n g}(M, f ; g)\}=\cup_{g \in G}\{\boldsymbol{R n g}(g)\}$ is called spectrum of the set M with respect to f.

Obviously $\operatorname{Spr}(M, f) \subseteq\{1,2, \ldots, k\}$.
Definition 5. ([2]) max $\boldsymbol{S p r}(M, f)$ is called range of M with respect to f.
By $\operatorname{Rng}(M, f)$ we denote the range of M for f as

$$
\mathbf{R n g}(M, f)=\max \mathbf{S p r}(M, f)=\max _{g \in G}\{\mathbf{R n g}(M, f ; g)\}=\max _{g \in G}\{\mathbf{R n g}(g)\}
$$

Let $\mathbf{Q}_{n, k}$ be the number of functions from P_{n}^{k}, which have a property \mathbf{Q}, i.e. \mathbf{Q} fully describes the $\mathbf{Q}_{n, k}$.

Theorem 1. If $M \subset X_{f},|M|=m>0$ then the number of functions $f \in P_{n}^{k}$, for which
1.1) each subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$ has the property \boldsymbol{Q} is

$$
\begin{equation*}
\left[\boldsymbol{Q}_{m, k}\right]^{k^{n-m}} \tag{4}
\end{equation*}
$$

1.2) there is a subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$, which has the property \boldsymbol{Q} is

$$
\begin{equation*}
k^{k^{n}}-\left[k^{k^{m}}-\boldsymbol{Q}_{m, k}\right]^{k^{n-m}} \tag{5}
\end{equation*}
$$

Proof 1.1. Let $X_{f} \backslash M=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n-m}}\right\}$. Let us denote all possible tuples of constants for the variables from $X_{f} \backslash M$ by $\left\{c_{1}^{i}, c_{2}^{i}, \ldots, c_{n-m}^{i}\right\}, i=1,2, \ldots, k^{n-m}$. If $g_{i}=f\left(x_{j_{1}}=c_{1}^{i}, x_{j_{2}}=c_{2}^{i}, \ldots, x_{j_{n-m}}=c_{n-m}^{i}\right)$, then $g_{i} \in P_{m}^{k}, i=1,2, \ldots, k^{n-m}$.

The number of functions from P_{m}^{k}, which have a property \mathbf{Q}, is $\mathbf{Q}_{m, k}$. The tabular presentation of f can be viewed as k^{n-m} tables with m rows, which are the tabular presentations of the functions $g_{i}, i=1,2, \ldots, k^{n-m}$.

In view of the fact that every subfunction g_{i} must have the property \mathbf{Q} and can be chosen among $\mathbf{Q}_{m, k}$, then the number of different functions f, for which every subfunction $g{ }^{X_{f} \backslash M} \prec$ has the property \mathbf{Q} is

$$
\left[\mathbf{Q}_{m, k}\right]^{k^{n-m}}
$$

Proof 1.2. Let us denote by $\mathbf{T}_{n, k}=k^{k^{n}}-\mathbf{Q}_{n, k}$ the number of functions from P_{n}^{k}, which do not have the property \mathbf{Q}. From T1, (4) it follows that the number of functions $f \in P_{n}^{k}$, for which each subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$ does not have the property \mathbf{Q}, is

$$
\left[\mathbf{T}_{m, k}\right]^{k^{n-m}}=\left[k^{k^{m}}-\mathbf{Q}_{m, k}\right]^{k^{n-m}}
$$

It is evident that $k^{k^{n}}-\left[k^{k^{m}}-\mathbf{Q}_{m, k}\right]^{k^{n-m}}$ is the number of functions $f \in P_{n}^{k}$, for which there is at least one subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$ with the property \mathbf{Q}.

If \mathbf{Q} is exactly the property of functions f for which $\mathbf{R n g}(f)=q$, then from $\mathbf{Q}_{n, k}=$ $\mu_{n}^{k}(q)$ and Theorem 1, (4) we obtain Theorem 2.3 from [2]:

Corollary 1. If $M \subset X_{f},|M|=m>0$ then the number of functions $f \in P_{n}^{k}$ for which $\boldsymbol{R n g}(M, f ; g)=q, q \leq k$, for all $g \stackrel{X_{f} \backslash M}{\prec} f$ is

$$
\begin{equation*}
\left[\mu_{m}^{k}(q)\right]^{k^{n-m}} \tag{6}
\end{equation*}
$$

Definition 6. ([3]) A variable x_{i} is called essential for the function $f \in P_{n}^{k}$ if there exist values $c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}$ such that the function $f\left(c_{1}, \ldots, c_{i-1}, x_{i}, c_{i+1}, \ldots, c_{n}\right)$ assumes at least two different values.

Definition 7. ([3]) A set M of variables is called separable for the function f if there exist a subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$ which depends on all variables from M.
[4] Taking into consideration that $\mathbf{Q}_{n, k}=\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} k^{k^{n-j}}$ is the number of functions from P_{n}^{k} which depend essentially on all their variables (property \mathbf{Q}), Definition 7 and Theorem 1, (5) we obtain

Corollary 2. If $M \subset X_{f},|M|=m>0$, then the number of functions $f \in P_{n}^{k}$ for which M is separable is

$$
\begin{equation*}
k^{k^{n}}-\left[\sum_{j=1}^{m}(-1)^{j+1} C_{m}^{j} k^{k^{m-j}}\right]^{k^{n-m}} . \tag{7}
\end{equation*}
$$

Definition 8. ([3]) A set M of essential variables for f is called \boldsymbol{c}-separable if each subfunction $g \stackrel{X_{f} \backslash M}{\prec} f$ depends on the variables in M.

Corollary 3. If $M \subset X_{f},|M|=m>0$, then the number of functions $f \in P_{n}^{k}$ for which M is \boldsymbol{c}-separable is

$$
\begin{equation*}
\left[\sum_{j=0}^{m}(-1)^{j} C_{m}^{j} k^{k^{m-j}}\right] k^{n-m} . \tag{8}
\end{equation*}
$$

Of particular interest are the functions $f \in P_{n}^{k}$, for which every subfunction $g \in G$ takes as many different values as the function f itself.

Theorem 2. If $\emptyset \neq M \subset X_{f},|M|=m$, then the number of functions $f \in P_{n}^{k}$ for which $\boldsymbol{R} \boldsymbol{n g}(f)=\boldsymbol{R} \boldsymbol{n g}(M, f ; g)=q, q \leq k$, for all $g, g \in G$ is

$$
\begin{equation*}
C_{k}^{q}\left[\frac{\mu_{m}^{k}(q)}{C_{k}^{q}}\right]^{k^{n-m}}=C_{k}^{q}\left[\sum_{s=1}^{q}(-1)^{q-s} C_{q}^{s} s^{k^{m}}\right]^{k^{n-m}} \tag{9}
\end{equation*}
$$

Proof. From $\operatorname{Rng}(f)=\boldsymbol{R n g}(M, f ; g)=q$ it follows that each subfunction $g \in G$ and the function f assume the same q values.

If we choose $q, q \leq k$, values that can be assumed by each function from P_{n}^{k}, then from (1) it follows that the number of functions from P_{n}^{k} which assume the chosen q values (property \mathbf{Q}) is

$$
\sum_{\substack{r_{1}+r_{2}+\ldots+r_{q}=k^{n} \\ r_{i} \geq 1, i=1,2, \ldots, q}} \frac{k^{n}!}{r_{1}!r_{2}!\ldots r_{q}!}=\frac{\mu_{n}^{k}(q)}{C_{k}^{q}}=\mathbf{Q}_{n, k}
$$

The proof is obtained by applying Theorem 1, (4) to the number of functions from P_{n}^{k} for which each subfunction $g \in G$ assumes the chosen q values (property \mathbf{Q}) and taking into consideration that q values can be chosen among k values in C_{k}^{q} ways.

Theorem 3. If $\emptyset \neq M \subset X_{f},|M|=m$ then the number of functions $f \in P_{n}^{k}$ for which $\boldsymbol{R n g}(f)=\boldsymbol{R n g}(M, f)=q, 1 \leq q \leq k$ is

$$
\begin{equation*}
C_{k}^{q}\left\{\left[\sum_{i=1}^{q} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i)\right]^{k^{n-m}}-\left[\sum_{i=0}^{q-1} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i)\right]^{k^{n-m}}\right\} \tag{10}
\end{equation*}
$$

Proof. Number of functions $f \in P_{n}^{k}$, that assume at most $q(q \leq k)$ fixed values (property \mathbf{Q}) is $\sum_{i=1}^{q} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{n}^{k}(i)=\mathbf{Q}_{n, k}$. It follows from Theorem 1, (4) that the number of functions from P_{n}^{k} for which every subfunction $g \in G$ assumes at most q fixed values is $\alpha=\left[\sum_{i=1}^{q} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i)\right]^{k^{n-m}}$.

Obviously $\beta=\left[\sum_{i=1}^{q-1} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i)\right]^{k^{n-m}}$ is the number of functions from P_{n}^{k} for which every subfunction $g \in G$ assumes at most $q-1$ among the fixed $q, q>1$ values, or $\beta=\left[\sum_{i=0}^{q-1} \frac{C_{q}^{i}}{C_{k}^{i}} \mu_{m}^{k}(i)\right]^{k^{n-m}} \quad$ when $q \geq 1$.

Taking into consideration that q values among k values can be chosen in C_{k}^{q} ways and that $\alpha-\beta$ is the number of functions from P_{n}^{k}, for which at least one subfunction $g \in G$ assumes all q fixed values, i.e. the functions for which $\boldsymbol{R n g}(f)=\boldsymbol{R n g}(M, f)=q$, we get the proof of Theorem 3 .

Let $M \neq \emptyset$ and $R \neq \emptyset$ be two sets of variables for the function $f \in P_{n}^{k}$, where $M \not \subset R$ and H be the set of all subfunctions of f with respect to R, i.e. $H=\{h: h \stackrel{R}{\prec} f\}$.

Definition 9. ([2]) The range of M with respect to R of the function f with a subfunction h is the range of the set $M \backslash R$ with respect to the function h.

The range of the set M with respect to R of the function f with a subfunction h will be denoted by $\boldsymbol{\operatorname { R n g }}(M ; R, f ; h)$ where $\boldsymbol{\operatorname { R n g }}(M ; R, f ; h)=\boldsymbol{\operatorname { R n g }}(M \backslash R, h)$.

Definition 10. ([2]) The set $\boldsymbol{\operatorname { S p r }}(M ; R, f)=\cup_{h \in H}\{\boldsymbol{R n g}(M ; R, f ; h)\}$ is spectrum of the set M with respect to R for f.

Obviously $\operatorname{Spr}(M ; R, f) \subseteq\{1,2, \ldots, k\}$.
Definition 11. Let $\boldsymbol{C}-\boldsymbol{S p r}(M ; R, f)$ be the set $\left\{1^{p_{1}}, 2^{p_{2}}, \ldots, k^{p_{k}}\right\}$, where $p_{t}, t=$ $1, \ldots, k$ is the number of all the different tuples of constants for the variables of R, for which from f subfunctions can be obtained, with respect to which the set of variables $M \backslash R$ has range equal to t.

It is obvious that $p_{1}+p_{2}+\ldots+p_{k}=\lambda_{|R|}=k^{|R|}$, where $p_{t} \geq 0, t=1, \ldots, k$.
Theorem 4. If $M \subset X_{f}, R \subset X_{f},|M|=m,|R|=r,|M \cap R|=s$, then the number of functions $f \in P_{n}^{k}$, for which $\boldsymbol{C}-\boldsymbol{S p r}(M ; R, f)=\left\{1^{p_{1}}, 2^{p_{2}}, \ldots, k^{p_{k}}\right\}$, is

$$
\begin{equation*}
\frac{k^{r}!}{p_{1}!p_{2}!\ldots p_{k}!} \cdot \alpha_{1}^{p_{1}} \cdot \alpha_{2}^{p_{2}} \ldots \alpha_{k}^{p_{k}} \tag{11}
\end{equation*}
$$

where $\alpha_{1}=k^{k^{n+s-m-r}}, \alpha_{t}=\left[\sum_{i=1}^{t} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}-\left[\sum_{i=1}^{t-1} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}$ for $t>1$.
Proof. Associate the number t with each tuple of constants for the variables of R, for which from f subfunctions can be obtained, with respect to which $M \backslash R$ has range equal to t. The number of all the different associations, where with p_{1} tuples of constants we associate 1 , with p_{2} tuples of constants we associate $2, \ldots$, with p_{k} tuples of constants we associate k, is

$$
\frac{\left(p_{1}+p_{2}+\ldots+p_{k}\right)!}{p_{1}!p_{2}!\ldots p_{k}!}=\frac{k^{r}!}{p_{1}!p_{2}!\ldots p_{k}!} .
$$

To each number t, a subfunction from P_{n-r}^{k} corresponds with respect to which $M \backslash R$ $(|M \backslash R|=m-s)$ has range equal to t. Taking into consideration that these subfunctions can be chosen for $t=1$ ([2], Corollary 2.3) in $\alpha_{1}=k^{k^{n+s-m-r}}$ different ways, and for $t>1$ ([2], Theorem 2.4) in $\alpha_{t}=\left[\sum_{i=1}^{t} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}-\left[\sum_{i=1}^{t-1} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}$ ways, we obtain the proof of the theorem.

Theorem 5. If $M \subset X_{f}, R \subset X_{f},|M|=m,|R|=r,|M \cap R|=s$, then the number of functions $f \in P_{n}^{k}$, for which $\boldsymbol{\operatorname { S p r }}(M ; R, f)=\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}, j \leq k$, is

$$
\begin{equation*}
\sum_{\substack{r_{1}+r_{2}+\ldots+r_{j}=k^{r} \\ r_{t} \geq 1, t=1,2, \ldots, j}} \frac{k^{r}!}{r_{1}!r_{2}!\ldots r_{j}!} \cdot \rho_{1}^{r_{1}} \cdot \rho_{2}^{r_{2}} \ldots \rho_{j}^{r_{j}} \tag{12}
\end{equation*}
$$

where $\rho_{t}=\left[\sum_{i=1}^{q_{t}} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}-\left[\sum_{i=0}^{q_{t}-1} \mu_{m-s}^{k}(i)\right]^{k^{n+s-m-r}}, t=1, \ldots, j$.

Proof. Let us denote by r_{t} the number of all different tuples of constants for the variables from R, for which from f subfunctions can be obtained, with respect to which the set of variables $M \backslash R$ has range equal to $q_{t}, t=1,2, \ldots, j$.

In this case, for f we have $\mathbf{C - S p r}(M ; R, f)=\left\{q_{1}^{r_{1}}, q_{2}^{r_{2}}, \ldots, q_{j}^{r_{j}}\right\}$.
Taking into consideration the fact that each function f for which $\mathbf{C - S p r}(M ; R, f)=$ $\left\{q_{1}^{r_{1}}, q_{2}^{r_{2}}, \ldots, q_{j}^{r_{j}}\right\}$, where $r_{1}+r_{2}+\ldots+r_{j}=k^{r}, r_{t} \geq 1, t=1,2, \ldots, j$, has $\operatorname{Spr}(M ; R, f)=$ $\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}$, and (3) and applying Theorem 4, we get the proof of Theorem 5.

When $R=X_{f} \backslash M$, we have $\operatorname{Spr}(M ; R, f)=\mathbf{S p r}\left(M ; X_{f} \backslash M, f\right)=\mathbf{S p r}(M, f)$. By applying Theorem 4 (Theorem 5) in this special case, we obtain the number of functions $f \in P_{n}^{k}$, for which $\mathbf{C - S p r}(M, f)=\left\{1^{p_{1}}, 2^{p_{2}}, \ldots, k^{p_{k}}\right\},\left(\operatorname{Spr}(M, f)=\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}\right.$, $j \leq k$, where $M \subset X_{f},|M|=m>0,|R|=r=n-m,|M \cap R|=s=0$.

REFERENCES

[1] V. N. SAChKov. Introduction into combinatorial methods of discrete mathematics. Moscow, Nauka, 1982.
[2] D. St. Kovachev. On the number of discrete functions with a given range. In: General algebra and applications, Proceedings of the 59-th Workshop on general algebra, Potsdam 2000, (Eds K. Denecke, H.-J. Vogel), 125-134.
[3] Sl. Vl. Shtrakov. Separable sets of variables and s-sistems. In: Research in Mathematics, Vol. 5, Discrete Mathematics and Applications, Blagoevgrad, 1995, (Eds Sl. Shtrakov, Iv. Mirchev), 61-67.
[4] K. N. Chimev, I. D. Gyudjenov. Subfunctions and cardinality of some classes of functions. Blagoevgrad, 1987, 65. (К. Н. Чимев, И. Д. Гюдженов, Подфункции и мощност на някои класи функции. Благоевград, 1987).
[5] M. Eigner. Combinatorial Theory. New York, 1979.
Dimiter Stoichkov Kovachev
Department of Computer Sciences
South-West University "Neofit Rilski"
P.O. 79, 2700 Blagoevgrad, Bulgaria
e-mail: dkovach@aix.swu.bg

ВЪРХУ БРОЯ НА НЯКОИ k-ЗНАЧНИ ФУНКЦИИ НА n ПРОМЕНЛИВИ

Димитър Стоичков Ковачев

Нека M и R са множества от аргументи на функцията $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$, където P_{n}^{k} е множеството от всички k-значни функции на n променливи. В тази статия е намерен е броят на функции $f \in P_{n}^{k}$, за които

- множеството M е отделимо за f;
- множеството M е с-отделимо за f;
- всяка подфункция на f, с аргументи множеството M, приема стойностите на функцията;
- множеството M относно R за функцията f има даден спектър;
- множеството M относно R за функцията f има даден с-спектър и др.

Начина на преброяване може да послужи и за „конструиране" на разгледаните функции.

[^0]: *1991 Mathematics Subject Classification: 03B50, 04A20, 05A05, 05A10, 05A18; Keywords: Functions of \boldsymbol{k}-valued logic, range of a function, subfunction, separable sets, essential variables.

