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A NOTE ON THE CONVERGENCE OF THE SOR
BORSCH-SUPAN METHOD

Nikolay V. Kyurkchiev

Convergence properties of the SOR Borsch-Supan method for the simultaneous ap-
proximation of polynomial roots are considered. The choice of acceleration parameter
is discussed.

1. Introduction. Let
fx)=2"+ap 12" '+ -+ a1z +ap

be the polynomial with the simple or complex zeros z;, ¢ = 1,...,n and mf, i=1,...,n
be distinct reasonably close approximations of these zeros. The method, which, in short,
will always be referred to as the (BS)-method, (Borsch-Supan method) can be defined
by the sequences

W (2
(1.1) gt =gk % i=1,...n, k=0,1,...,
13
J#i
where ka denotes the new approximation.

In thls paper we are concerned with the successive overrelaxation Borsch-Supan
method (SOR-BS method)

(xF
(1.2) xf“:axf—hM i=1,...,n, k=0,1,...,
3
JFi
where W;(x¥ zky/ H 7) and hy € (0,1] is an acceleration parameter. It

should be noted that the SOR BS nethod has a form of prediction-correction method.
Let
xéc) W W. : k k d
S I = gt 1=
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In practice, conditions for the convergence of the method (1.2) are given in the form of
the inequality

(1.3) w wd

h < ,
N+of] " 20— 1)

where w > 0 is a constant. The inequality (1.3) will be used in our analysis of the
SOR-BS method. In later considerations we will find the upper bound for w.

2. Main results. By the definition of d, W and oF we find
m—1DW d—(mn-1)W

l+of|>1—|oF|>1— =
|+0—Z|— |UZ| d d

We assume that

hiW < hiWd wd

k+1 k
;= | < < ,
2 Z|_|1+0f|_d—(n—1)VV 2(n—1)

ie.

(2.1) W< mﬁh

w
hie + 4

Before establishing the convergence theorem for the method (1.2), we give some nec-
essary estimates using the previous notations.

Lemma 2.1. If the inequality (2.1) holds, then for i € I,,, we have

where G =

- e Bk
() ot <
2 — 2
(i) 2ﬂk<|1+af|> J;B’“
2n—-2—-w
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Proof. Of (i):
(n—DW _ b
|0£€| < a4 < o
Of (ii):
2 2 —
Lo <10t < 2R otz ot > 20
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Of (iii):

[l k] > ol — b — ol =t > -

wd 7d2n727w'

J 2(n—1)  2(n—1)
Of (iv):
|Il_c+1 _mlﬁll > |xl_c —xk| _ |xl_c+1 _xl_cl _ |xk+1 —xk| ~d—2 wd _ n—1—-w
! 7= J ' ‘ J J 2(n—1) n—1
Of (v):
i |Wg(x§€)| < (n—1)W2(n-1) 6, n—1 B
j#|xf+17;c?|_ d(2n —2 —w)) Mm—2—-w= 2-w
. . n—1
The last inequality < holds for each n > 2.
2n—2—w 2—w
Of (vi):
n—1
n k1l k n |:C]?+1 — ;pk| —wd
z, "~z j 7 2(n—1)
H o s | S H (1 * |xk+1 — gkttt < {1+ dn—1—w)
i ’ i#i i i =

wle

ﬂ n—1
<1+#> <e
n—1—w

Using the estimates given in Lemma 2.1 we prove
Lemma 2.2. If the inequality (2.1) holds, then

ke B Bk Brhu 2
(2.2) |W1(xz )| < (1 hi + 9 + 20_)) 2 — Ok

Proof. Evidently

o ) Wiah)  ~Wia})
(2.3) f(:v)—jllll(x*%) 1+zxf+;x;§

From (1.2) we obtain

Wi(af) 1 k
I'erl 733? hk( +Uz)
According to this, the relation (2.3) for z = 2™ becomes

n

1 n
Fafty = @ — e[ —ab) [1- h_k(l + o) + Zx

Wi (

i
=51

i i i

n

After dividing with H(mf“ - a:?“) we obtain
J#i
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k+1 n k+1 k
k+1y _ f(zi™) it T
(2.4) Wiz ') = — H ZEHL xk 1A
H(xi_c+1 _ x;ﬁ_l) j#i Ty J
J#i
where .
Wj(x5)
g J
Starting from (2.4) and using estimates of Lemma 2.1 we find
A= hk —1 O’k

 hg Z k+1 :c’?’

i i J
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W) < bt ok Ae¥ < ] e
1407
ﬁk ﬁkhk 2 w k
< 1—-h — —e2 |W;(z))|.
(1=t G 2 ) S 2t miah
We consider the contraction factor ) for the SOR-BS method appearing in the relation
[ok¥2 — b < QlabH — .

We assume that the ratio h;:l is very close to 1. We have the following theorem

Theorem 2.1. For the contraction factor Q the following formula is valid

Q = q(w, hy)er,
where 5 Behe \ 22+ Bi)
_ _ Pk kUK +DOk) «
q(w, h) = (1 hy + > +2—w)( —ﬁk)Qe ,
Pkt
a = e

Proof. Let ¢! =zt —2!™ t =k, k+ 1. Then

(Wi(f)| _ 2

"l=h Wi :
|C’L| kK77 k1 |1 k| — k?| ( )|2_6k

By induction

k+1
hr1 (Wi (7)) 2
c; =h <h W; .
i T = his 14 oh| < k| Wi(ah )|27ﬂkle
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Fig. 1. Contraction of the Borsch-Supan SOR method

According to this and by (2.2), we obtain

P 2 B Brhe\ « hi |14 of|
< hepis——o— 1—hy+ = 5 |Wilz))| = y
= ’“*12—ﬁk+12—6k( ety ey e R
D1 4 < Br = Brhk > w24+ 6L 4
< 1—hg+— e cil-
hie (2= Brr1)(2 — Br) FT 9 T, 5 Il

Evidently 2 — Br+1 > 2 — Bk and

a2 — 2T < aqlw, byl T = 2f| = Qe —af).
This proves the theorem. [

According to the relation above in Fig. 1 we represent the quantity g(w,h) as a
function of w, taking h as a parameter. The upper bound, corresponding to ¢ = 1, is
denoted by wp. The hy increase to 1, defining BS-method in the continuation of the
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iteration procedure (o = 1). By the way, from the equation

Gw.1) = wd—-w)(1 er)e% _1
22 —w)
we find the upper bound for w: w < wy, ~ 0.4678.
The optimal values of h¥ (optimal in the sense that convergence is guaranteed) are not
known. Other results have been found by Petkovic, Herceg, Ilic [2], Petkovic, Kyurkchiev
[3], Kyurkchiev [1].
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BEJIE2KKA B'BPXY CXOIMMOCTTA HA PEJIAKCAIITMOHHNA
METOI HA BBOPCK-CYIIAH

Huxkonait B. Kiopkunes

B Tasum craTwms ce TpeTumpaT BBIPOCU CBBP3aHU ¢ M300pa HA HAYAIHU allPOKCUMAIINI
rapaHTUPAIIN CXOOUMOCTTA HA PejlakCauuoHHus MeTon Ha Bropck-Cymnas.
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