MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2001 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001

Proceedings of Thirtieth Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 8–11, 2001

A NOTE ON THE CONVERGENCE OF THE SOR BORSCH-SUPAN METHOD

Nikolay V. Kyurkchiev

Convergence properties of the SOR Borsch-Supan method for the simultaneous approximation of polynomial roots are considered. The choice of acceleration parameter is discussed.

1. Introduction. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

be the polynomial with the simple or complex zeros x_i , i = 1, ..., n and x_i^k , i = 1, ..., n be distinct reasonably close approximations of these zeros. The method, which, in short, will always be referred to as the (BS)-method, (Borsch-Supan method) can be defined by the sequences

(1.1)
$$x_i^{k+1} = x_i^k - \frac{W_i(x_i^k)}{1 + \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^k - x_j^k)}}, \quad i = 1, \dots, n, \ k = 0, 1, \dots,$$

where \boldsymbol{x}_i^{k+1} denotes the new approximation.

In this paper we are concerned with the successive overrelaxation Borsch-Supan method (SOR-BS method)

(1.2)
$$x_i^{k+1} = x_i^k - h_k \frac{W_i(x_i^k)}{1 + \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^k - x_j^k}}, \quad i = 1, \dots, n, \ k = 0, 1, \dots,$$

where $W_i(x_i^k) = f(x_i^k) / \prod_{j \neq i}^n (x_i^k - x_j^k)$ and $h_k \in (0,1]$ is an acceleration parameter. It should be noted that the SOR-BS nethod has a form of prediction-correction method.

should be noted that the SOR-BS nethod has a form of prediction-correction method Let

$$\sigma_i^k = \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^k - x_j^k}, \quad \max_{1 \le i \le n} |W_i(x_i^k)| = W, \quad \min_{j \ne i} |x_i^k - x_j^k| = d.$$

In practice, conditions for the convergence of the method (1.2) are given in the form of the inequality

(1.3)
$$h_k \frac{W}{|1 + \sigma_i^k|} < \frac{\omega d}{2(n-1)},$$

where $\omega > 0$ is a constant. The inequality (1.3) will be used in our analysis of the SOR-BS method. In later considerations we will find the upper bound for ω .

2. Main results. By the definition of d, W and σ_i^k we find

$$|1 + \sigma_i^k| \ge 1 - |\sigma_i^k| > 1 - \frac{(n-1)W}{d} = \frac{d - (n-1)W}{d}.$$

We assume that

$$|x_i^{k+1} - x_i^k| \le \frac{h_k W}{|1 + \sigma_i^k|} \le \frac{h_k W d}{d - (n-1)W} < \frac{\omega d}{2(n-1)},$$

i.e.
$$(2.1) \hspace{3cm} W < \frac{d}{2(n-1)}\beta_k,$$

where $\beta_k = \frac{\omega}{h_k + \frac{\omega}{2}}$.

Before establishing the convergence theorem for the method (1.2), we give some necessary estimates using the previous notations.

Lemma 2.1. If the inequality (2.1) holds, then for $i \in I_n$, we have

$$(i) \quad |\sigma_i^k| < \frac{\beta_k}{2}$$

(ii)
$$\frac{2-\beta_k}{2} < |1+\sigma_i^k| > \frac{2+\beta_k}{2}$$

(iii)
$$|x_i^{k+1} - x_j^k| > d \frac{2n - 2 - \omega}{2(n-1)}$$

$$(iv) \quad |x_i^{k+1} - x_j^{k+1}| > d \frac{n-1-\omega}{n-1}$$

$$(v) \quad \sum_{j \neq i}^{n} \frac{|W_{j}(x_{j}^{k})|}{|x_{i}^{k+1} - x_{j}^{k}|} < \frac{\beta_{k}}{2 - \omega}$$

$$(vi) \quad \prod_{j \neq i}^{n} \left| \frac{x_i^{k+1} - x_j^k}{x_i^{k+1} - x_j^{k+1}} \right| < \left(1 + \frac{\frac{\omega}{2}}{n - 1 - \omega} \right)^{n - 1} < e^{\frac{\omega}{2}}.$$

Proof. Of (i):

$$|\sigma_i^k| \le \frac{(n-1)W}{d} < \frac{\beta_k}{2}.$$

Of (ii):

$$|1 + \sigma_i^k| \le 1 + |\sigma_i^k| < \frac{2 + \beta_k}{2}, |1 + \sigma_i^k| \ge 1 - |\sigma_i^k| > \frac{2 - \beta_k}{2}.$$

Of (iii):

$$|x_i^{k+1} - x_j^k| \ge |x_i^k - x_j^k| - |x_i^{k+1} - x_i^k| > d - \frac{\omega d}{2(n-1)} = d \frac{2n - 2 - \omega}{2(n-1)}$$

Of (iv):

$$|x_i^{k+1} - x_j^{k+1}| \ge |x_i^k - x_j^k| - |x_i^{k+1} - x_i^k| - |x_j^{k+1} - x_j^k| > d - 2\frac{\omega d}{2(n-1)} = d\frac{n-1-\omega}{n-1}.$$

Of (v):

$$\sum_{j\neq i}^{n} \frac{|W_j(x_j^k)|}{|x_i^{k+1} - x_j^k|} \le \frac{(n-1)W2(n-1)}{d(2n-2-\omega)} = \beta_k \frac{n-1}{2n-2-\omega} \le \frac{\beta_k}{2-\omega}.$$

The last inequality $\frac{n-1}{2n-2-\omega} \le \frac{1}{2-\omega}$ holds for each $n \ge 2$. Of (vi):

$$\prod_{j \neq i}^{n} \left| \frac{x_i^{k+1} - x_j^k}{x_i^{k+1} - x_j^{k+1}} \right| \leq \prod_{j \neq i}^{n} \left(1 + \frac{|x_j^{k+1} - x_j^k|}{|x_i^{k+1} - x_j^{k+1}|} \right) < \left(1 + \frac{\frac{\omega d}{2(n-1)}}{\frac{d(n-1-\omega)}{n-1}} \right)^{n-1} \\
= \left(1 + \frac{\frac{\omega}{2}}{n-1-\omega} \right)^{n-1} < e^{\frac{\omega}{2}}.$$

Using the estimates given in Lemma 2.1 we prove

Lemma 2.2. If the inequality (2.1) holds, then

$$(2.2) |W_i(x_i^{k+1})| < \left(1 - h_k + \frac{\beta_k}{2} + \frac{\beta_k h_k}{2 - \omega}\right) \frac{2}{2 - \beta_k} e^{\frac{\omega}{2}} |W_i(x_i^k)|.$$

Proof. Evidently

(2.3)
$$f(x) = \prod_{j=1}^{n} (x - x_j^k) \left(1 + \frac{W_i(x_i^k)}{x - x_i^k} + \sum_{j \neq i}^{n} \frac{W_j(x_j^k)}{x - x_j^k} \right).$$

From (1.2) we obtain

$$\frac{W_i(x_i^k)}{x_i^{k+1} - x_i^k} = -\frac{1}{h_k}(1 + \sigma_i^k).$$

According to this, the relation (2.3) for $x = x_i^{k+1}$ becomes

$$f(x_i^{k+1}) = (x_i^{k+1} - x_i^k) \prod_{j \neq i}^n (x_i^{k+1} - x_j^k) \left(1 - \frac{1}{h_k} (1 + \sigma_i^k) + \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^{k+1} - x_j^k} \right).$$

After dividing with $\prod_{i \neq i}^{n} (x_i^{k+1} - x_j^{k+1})$ we obtain

$$(2.4) W_i(x_i^{k+1}) = \frac{f(x_i^{k+1})}{\prod_{j \neq i}^n (x_i^{k+1} - x_j^{k+1})} = (x_i^{k+1} - x_i^k) \prod_{j \neq i}^n \frac{x_i^{k+1} - x_j^k}{x_i^{k+1} - x_j^{k+1}} A,$$

where

$$A = 1 - \frac{1}{h_k} (1 + \sigma_i^k) + \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^{k+1} - x_j^k}.$$

Starting from (2.4) and using estimates of Lemma 2.1 we find

$$\begin{split} A &= \frac{h_k - 1}{h_k} - \frac{\sigma_i^k}{h_k} + \sum_{j \neq i}^n \frac{W_j(x_j^k)}{x_i^{k+1} - x_j^k}, \\ h_k|A| &\leq 1 - h_k + |\sigma_i^k| + h_k \sum_{j \neq i}^n \frac{|W_j(x_j^k)|}{|x_i^{k+1} - x_j^k|} \leq 1 - h_k + \frac{\beta_k}{2} + \frac{h_k \beta_k}{2 - \omega}. \\ |W_i(x_i^{k+1})| &\leq |x_i^{k+1} - x_i^k||A|e^{\frac{\omega}{2}} \leq h_k \frac{|W_i(x_i^k)|}{1 + \sigma_i^k|}|A|e^{\frac{\omega}{2}} \\ &< \left(1 - h_k + \frac{\beta_k}{2} + \frac{\beta_k h_k}{2 - \omega}\right) \frac{2}{2 - \beta_k} e^{\frac{\omega}{2}}|W_i(x_i^k)|. \end{split}$$

We consider the contraction factor Q for the SOR-BS method appearing in the relation

$$|x_i^{k+2} - x_i^{k+1}| < Q|x_i^{k+1} - x_i^k|.$$

We assume that the ratio $\frac{h_{k+1}}{h_k}$ is very close to 1. We have the following theorem **Theorem 2.1.** For the contraction factor Q the following formula is valid

$$Q = q(\omega, h_k)\alpha$$

where

$$q(\omega, h_k) = \left(1 - h_k + \frac{\beta_k}{2} + \frac{\beta_k h_k}{2 - \omega}\right) \frac{2(2 + \beta_k)}{(2 - \beta_k)^2} e^{\frac{\omega}{2}},$$

$$\alpha = \frac{h_{k+1}}{h_k}.$$

Proof. Let $c_i^t = x_i^t - x_i^{t+1}$, t = k, k+1. Then

$$|c_i^k| = h_k \frac{|W_i(x_i^k)|}{|1 + \sigma_i^k|} \le h_k |W_i(x_i^k)| \frac{2}{2 - \beta_k}.$$

By induction

$$|c_i^{k+1}| = h_{k+1} \frac{|W_i(x_i^{k+1})|}{|1 + \sigma_i^{k+1}|} \le h_{k+1} |W_i(x_i^{k+1})| \frac{2}{2 - \beta_{k+1}}.$$

Fig. 1. Contraction of the Borsch-Supan SOR method

According to this and by (2.2), we obtain

$$|c_{i}^{k+1}| \leq h_{k+1} \frac{2}{2 - \beta_{k+1}} \frac{2}{2 - \beta_{k}} \left(1 - h_{k} + \frac{\beta_{k}}{2} + \frac{\beta_{k} h_{k}}{2 - \omega} \right) e^{\frac{\omega}{2}} |W_{i}(x_{i}^{k})| \frac{h_{k}}{h_{k}} \frac{|1 + \sigma_{i}^{k}|}{|1 + \sigma_{i}^{k}|}$$

$$\leq \frac{h_{k+1}}{h_{k}} \frac{4}{(2 - \beta_{k+1})(2 - \beta_{k})} \left(1 - h_{k} + \frac{\beta_{k}}{2} + \frac{\beta_{k} h_{k}}{2 - \omega} \right) e^{\frac{\omega}{2}} \frac{2 + \beta_{k}}{2} |c_{i}^{k}|.$$

Evidently $2 - \beta_{k+1} > 2 - \beta_k$ and

$$|x_i^{k+2} - x_i^{k+1}| < \alpha q(\omega, h_k)|x_i^{k+1} - x_i^k| = Q|x_i^{k+1} - x_i^k|.$$

This proves the theorem. \Box

According to the relation above in Fig. 1 we represent the quantity $q(\omega, h)$ as a function of ω , taking h as a parameter. The upper bound, corresponding to q = 1, is denoted by ω_h . The h_k increase to 1, defining BS-method in the continuation of the 186

iteration procedure ($\alpha = 1$). By the way, from the equation

$$q(\omega, 1) = \frac{\omega(4 - \omega)(1 + \omega)}{2(2 - \omega)}e^{\frac{\omega}{2}} = 1$$

we find the upper bound for ω : $\omega < \omega_h \approx 0.4678$.

The optimal values of h_i^k (optimal in the sense that convergence is guaranteed) are not known. Other results have been found by Petkovic, Herceg, Ilic [2], Petkovic, Kyurkchiev [3], Kyurkchiev [1].

REFERENCES

- [1] N. KYURKCHIEV. Initial approximations and root finding methods. WILEY-VCH Verlag Berlin GmbH, vol. 104, 1998.
- [2] M. Petkovic, D. Herceg, S. Ilic. Point estimation theory and its applications. Mala knjiga Novi Sad, 1997.
- [3] M. Petkovic, N. Kyurkchiev. A note on the convergence of the Weierstrass SOR method for polynomial roots. *JCAM* **80** (1997), 163–168.

Nikolay V. Kyurkchiev Institute of Mathematics and Informatics Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 8 1113 Sofia, Bulgaria e-mail: nkyurk.math.bas.bg

БЕЛЕЖКА ВЪРХУ СХОДИМОСТТА НА РЕЛАКСАЦИОННИЯ МЕТОД НА БЬОРСК-СУПАН

Николай В. Кюркчиев

В тази статия се третират въпроси свързани с избора на начални апроксимации гарантиращи сходимостта на релаксационния метод на Бьорск-Супан.