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In the present paper we consider a class of hypersurfaces of conullity two in Euclidean
space. We prove a characterization theorem for the hypersurfaces, which are regular
one-parameter systems of torses in terms of thier second fundamental tensor.

1. Preliminaries. For a Riemannian manifold (M",g) we denote by T, M™ the
tangent space to M™ at an arbitrary point p € M™ and by X M"-the Lie algebra of all
C™ vector fields on M™.

Let (M™, g,A) be a Riemannian manifold endowed with a two-dimensional distribu-
tion A. Since our considerations are local, we can assume that there is an orthonormal

frame field {W, &} on M™, which spans A, i.e. A, =span{W,¢}, p € M™. We denote by
w and 7 the one-forms corresponding to W and &, respectively:

w(X)=g(W, X); n(X)=g(X); XeXxM"

A Riemannian manifold (M™, g, A) with curvature tensor R is said to be of conullity
two [1], if at every point p € M" there exists an orthonormal frame {e; = W,es =
& es,...,en} of the tangent space T, M™ such that

i) R(e1,e2,e2,e1) = —R(ea,e1,e2,e1) = —R(e1,e2,e1,e2) = R(ea, e1,€1,e3) = k(p) #
0;

ii) R(ei, ej, e, e;) =0, otherwise.

Let M™ be a hypersurface in Euclidean space E™!. We denote the standard metric
in E"*t! by g and its Levi-Civita connection by V’. Further, let V be the induced
connection on M™ and

hX,Y)=g(AX,Y); X,Y € XM"

be the second fundamental tensor of the hypersurface M™. Hypersurfaces of conullity
two are characterized in terms of the second fundamental tensor as follows [4]:

Proposition 1.1. A hypersurface (M™, g, A) in E"1 is of conullity two iff its second
fundamental tensor h has the form

h=X@w+pwen+n@w)+vmen, v —p®#0,
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where A\, u and v are functions on M™.

A hypersurface M™, which is a one-parameter system {E"~!(s)}, s € J, of planes of
codimension two, defined in an interval J, is said to be a ruled hypersurface. The planes
E"1(s) are called generators of M™. A ruled hypersurface is said to be developable (a
torse), if its normal vector field N is parallel (constant) along each generator. Torses in
E™*1! are characterized by the following (see [2])

Lemma 1.2. Let (M™, g) be a hypersurface in E" ' with second fundamental tensor
h. Then M™ is locally a torse iff
h=kw®uw,

where k and w are a function and a unit one-form on M™, respectively.
If N is a unit vector field normal to the torse T™ = {E"~!(s)}, s € J, then

VN = —kw(X)W; X eXT",

where W is a unit vector field orthogonal to the generators and correspondent to the
one-form w.

Remark 1. Every hyperplane M"™ = E™ can be regarded as a torse with £ = 0. The
hyperplanes are trivial torses. We shall only consider non-trivial ones.

Now, let T"~! be a torse in a hyperplane E™ in E"*! (n > 3). Such a torse is called
a torse of codimension two. Hypersurfaces of conullity two, which are one-parameter
systems M™ = {T"Y(s)}, s € J, of torses of codimension two, are characterized in
[4]. In general, the second fundamental tensor A of a one-parameter system of torses
is not diagonalized. In this paper we study a special class of one-parameter systems of
torses, for which the second fundamental tensor A is diagonalized. This is the class of
the regular systems of torses. We prove a characterization theorem for hypersurfaces in
Ent1l which are regular one-parameter systems of torses.

2. Characterization of hypersurfaces in Euclidean space which are regular
one-parameter systems of torses

We consider a torse 7"~ ! of codimension two lying in a hyperplane E™ in E"+!
(n > 3). The unit vector field orthogonal to the generators of 7"~ ! and its correspondent
one-form are denoted by W and w, respectively. It is clear that the vector field W is
determined up to a sign. If [ is the unit vector field normal to E™ and n is the unit vector
field normal to 7"~ in E™, then the pair {I,n} is called the canonical normal frame to
T™ 1. With respect to the canonical normal frame from Lemma 1.2 we have

Vil=0;

n—1
Vin = —kw(x)W; T AT,

(2.1)
where k is a function on 77 1.
If {N,&} is an arbitrary normal frame to 77!, then

& = cos pl + sin pn;

(2.2) N = —sin @l + cos pn,

where ¢ =<%(n, N). The equations (2.1) and (2.2) imply

VN = —kcos pw(x)W — dp(x)§;

n—1
Vi€ = —ksinpw(x)W + do(x)N; xe XT" .

(2.3)
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Now, let M™ = {T"~1(s)}, s € J, be a one-parameter system of torses of codimension
two, defined in an interval J. We denote by & the vector field orthogonal to the torses
T"1(s) and by N-the unit normal to the hypersurface M™. Then {N,¢} is a normal
frame field to each of the torses 7"~ !(s) and the equations (2.3) hold good.

We denote by Ag the distribution on M™, orthogonal to W and &, i.e.

Ag = {zg € XM"|w(x0) = n(zo) = 0}
and by A the distribution on M™, orthogonal to &, i.e.
A={zx e XM"n(xz)=0}.
Using (2.3), we get

(2 4) V;ON = 7d(p(x0)€, xo € Ag;
’ Viy N = —kcos oW — dp(W)E.

Definition ([3]). A one-parameter system M™ = {Q" 1(s)}, s € J, of surfaces
Q" 1(s) of codimension two is said to be regular, if the tangent space T,Q" ' to an
arbitrary surface Q"~1(s) is an eigen space of the second fundamental tensor A of the
hypersurface M™.

According to the above definition and equalities (2.4) a one-parameter system of torses
M"™ = {T""1(s)}, s € J, is regular iff dp(z) = 0, z € A, i.e. ¢ is a constant on each
torse T"~1(s). So, for a regular system of torses we have

VI N = —kcos pw(z)W;

(2.5) Vi& = —ksinpw(z)W;

T € A.

If h(X,Y) = g(AX,Y), X € XM", is the second fundamental tensor of the hyper-
surface M", then using the Weingarten formula

N =—A(X), XeXM",

we obtain

A(z) = kcospw(z)W, =z € A.
Hence
(26) h(xay) =k cos @w(x)w(y) T,y € A.

h(z,§) =0
If X and Y are arbitrary vector fields on M™, then

2.7) X =z+nX), zel
V=y+n)E yeA.
So, the equalities (2.6) and (2.7) imply

WX, Y) = dwo(X) @ w(Y) +vn(X) @ n(Y),
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where A = kcosp, v = h(&,§).
Thus we proved
Proposition 2.1. The second fundamental tensor h of a reqular one-parameter system

of torses has the form
h=Xw®uw+vn®n, v #0.

Remark 2. In case A = 0 or ¥ = 0 the hypersurface is a torse. This is a trivial case
of a regular one-parameter system of torses.

Let (M™, g, W, &) be a hypersurface in E"*! endowed with an orthonormal frame field
{W, £} and second fundamental tensor

(2.8) h= w®w+rvn®n, Av#0.

We denote by Ay the distribution on M™, orthogonal to W and £. Taking into account
(2.8), from the Codazzi equation

(Vxh(Y,Z2)=(Vyh)(X,Z2); X, Y, ZeXM"

we obtain the following integrability conditions for hypersurfaces with second fundamen-
tal tensor (2.8):
1) Vo€ = (o) W;

3) 9(VwW,20) = ——;

) g(Vet, 20 = 2400,

5) 9V, 0) = L2 (o)
6) 9(VeW, 0) = “5 2 (wo);

7) (A =v)g(VwW, &) = dA(&);

8) ()‘ - V)g(V€€7 W) = _dV(W>7
where zg € Ay and y(zg) = g(V, &, W).

Now we shall prove the main result in the paper

Theorem 2.2. Let (M™, g, W, &) be a hypersurface in E™t. Then M™ is locally a
regqular one-parameter system of torses iff

HDh= @w+vnn, \v+#0;

i) y=0;

Qi
ity d (VS

where A is the distribution on M™, orthogonal to €.

Proof. 1. Let M™ = {T""1(s)}, s € J, be a regular one-parameter system of torses
and {W, ¢} be the orthonormal frame field on M™ such that £ is orthogonal to the torses
T~ 1(s) and W is orthogonal to the generators of 7"~ 1(s). According to Proposition 2.1
the second fundamental tensor h of M™ has the form i).

If N is the unit normal to M™, then the equalities (2.5) hold good. So, for z¢g € Ag
we have V/, £ = 0. Hence the one-form v on Ay is zero.

() =0, z € A,
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Further, let {ej,...,e,—_2} be an orthonormal basis of Ay at p € M™. Then from the
formula

n—2
dive =>"g(Vi.& e) + g(Vig&, W)
i=1
we find div€ = g(Viy:€, W). Now the second equality of (2.5) implies
div€& = —ksin .
div¢

Taking into account that A = k cos ¢, we find tanp = — . But for a regular system

Qi
of torses ¢ is a constant on each torse T"1(s), so d(%g)(a:) =0,z €A.

II. Let M™ be a hypersurface for which the conditions i)—iii) hold good. Taking into
account that v(z¢) = 0 and the integrability conditions 1) and 5), we get

dn(z,y) =0, =z,y€A.

Hence the distribution A is involutive. So, for every point p € M™ there exists a unique
maximal integral submanifold S7'~' of A containing p. Thus M™ = {S""!(s)}, s € J,
is a one-parameter system of surfaces S"~1(s) of codimension two. Using i), ii) and the

integrability conditions 1) and 5) for M™, we get

VIN = —dw(z)W,

Vie = divew(@W, 5

(2.9)

& and using iii), we obtain dp(x) = 0, x € A, i.e. ¢ is

Denoting ¢ = arctan

only a function of the parameter s. So, there exists a function k£ on M™, such that
A=kcosp; —div& = ksinp.
Thus the equalities (2.9) take the form

V!N = —kcos pw(z)W;

V'€= —ksin pw(z)W; veh.

(2.10)

Let {l,n} be the frame field of M™ given by

l = cospé —sinpN;

(2.11) n = sin & + cos e N.

Then the equalities (2.10) and (2.11) imply

Viil=0;

n—1
Vin=—kw(x)W; TEAXST

(2.12)
The first equation of (2.12) shows that there exists a hyperplane E™ with normal | such
that S™~! lies in E™. The second equality of (2.12) and Lemma 1.2 imply that S™~1! is
locally a torse in E™ with normal n.
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Consequently, M™ is locally a regular one-parameter system of torses of codimension
two, which are the integral submanifolds of the distribution A. O
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PEIYIJISIPHUA ENHOITAPAMETPAYHU CUCTEMHA OT TOPCOBE B
EBKJINIOBO ITPOCTPAHCTBO

Benmunuka BacuieBa Musymiesa

B macrosmara craTtus m3yuaBame KJIAaC XUMEPIOBHLPXHUHU B €BKJINIOBO IIPOCTPAHC-
TBO, 32 KOUTO HYJIEBOTO IMPOCTPAHCTBO HA TEH30PAa HA KPUBMUHA UMa KOPA3MEPHOCT
nBe. Jloxo3BaMe XapakTepU3alMOHHA TEOPEMa 32 XUIEPIOBBbPXHUHUTE, KOUTO CA €II-
HOIIOPOMETPHWYHU CUCTEeMHU OT TOPCOBE, B TEDMUHNITE Ha BTOpaTa UM OCHOBHa ¢opMa.
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