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It is a well known fact that a finite group is nilpotent iff it satisfies an Engel law
of some length. The subject of our recent research has been to establish a similar
characterization for finite soluble groups. It is sufficient to check the problem on
two-generated subgroups. For this purpose a sequence of two-variable commutator
formulae are investigated (Conjecture of B.I.Plotkin). The solubility is checked by
examining a counter-example of least possible order, i.e. to show that in minimal
simple groups there are no such identities. Thus, we solve equations in matrix groups,
especially for the generic case G = PSL(2, p).
There is a strong evidence that Plotkin’s conjecture is true. We give some results by
computer calculations using GAP and formulate some conjectures.
The solution of such equations is connected with some well-known problems in finite
matrix groups, as for example the Ore conjecture.
Similar result was obtained for finitely dimensional Lie algebras by E.B.Plotkin and
B.Kunyavski (personal communication).
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1. Introduction. If G is a group, x, y ∈ G, let [x, y] = x−1y−1xy.

An Engel word in the variables x, y is a left-normed commutator
en(x, y) = [x,n y] = [x, y, . . . , y]

︸ ︷︷ ︸

n entries

.

It is a well known fact that a finite group G is nilpotent iff it satisfies an Engel law
en ≡ 1 for some n ∈ N.

The subject of our recent research has been to establish a similar characterization for
finite soluble groups. We would like to find a sequence of formulae u1, u2, . . . , un, . . . such
that a finite group G is soluble iff un ≡ 1 for some n ∈ N.

Moreover, it is sufficient to check the problem of solvability on 2-generated subgroups,
i.e. we can look for 2-variable identities which determine the property of solubility, be-
cause of the following Theorem of Thompson:

Theorem 1.1 [14], [2].Let G be a finite group in which every two elements generate

a soluble subgroup. Then G is soluble.

*This research was supported by the Joint Research Project on Computer Algebra between the
Bulgarian Academy of Sciences and the Ben-Gurion University of the Negev, Israel.
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2. Previous results. This problem coincides with some similar results proved in
the 80-s in [1, 5, 6, 7]. We were interested in the laws of the type:

em(x, y) = en(x, y), m < n,(1)

which hold in a group G. When m was chosen minimal with respect to this property, we
were able to characterize finite groups in terms of m. It is easy to see that every finite
group satisfies such a law. It was proved that for such a group m = 1 yelds abeliancy,
m = 2 yields solubility, while there exist finite simple groups with a law m = 3, such as
A5, PSL(2, 8)), etc.

The solubility was proved by examining a counter-example G0 of least possible or-
der, i.e. G0 belongs to the list of minimal finite non-soluble groups (that is, nonsoluble
groups in which every proper subgroup is soluble) [14]: PSL(2, p) (p = 5 or p ≡ ±2
(mod 5), p 6= 3), PSL(2, 2p), PSL(2, 3p) (p odd), Sz(2p) (p odd), PSL(3, 3).

3. The conjecture (B. I. Plotkin). Let

u1 = [x, y],
u′

1 = [u1, x], u′′
1 = [u1, y], u2 = [u′

1, u
′′
1 ], . . .

u′
n = [un, x], u′′

n = [un, y], un+1 = [u′
n, u′′

n], . . .

(2)

Conjecture 3.1 (B. Plotkin).A finite group G is soluble if and only if for some n

the identity un ≡ 1 holds in G.

In order to prove this, it is sufficient to show that in minimal simple groups there are
no such identities, i.e., the equation

∃k ∈ N, ∃n ∈ N : uk = un(3)

has a non-trivial solution.

Thus, we solve equations of type (3) in matrix groups, especially for the generic case
G = PSL(2, p).

A similar result was obtained for finitely dimensional Lie algebras by E. Plotkin and
B. Kunyavski (personal communication).

The solution of such equations is connected to some well-known problems in finite
matrix groups, as for example the Ore conjecture.

4. Matrix equations in linear groups. In various situations it is instructive to
represent a matrix as a product of matrices of a special nature. Given a class of matrices,
one studies products of elements from the class, and asks about the minimal number of
factors in a factorization. In Linear Algebra, one writes an invertible matrix as a product
of elementary matrices. One can ask how many elementary matrices (or commutators)
are needed to represent any product of elementary matrices (respectively, commutators).

In 1990 L. N. Vaserstein and E. Wheland [15] studied invertible matrices over rings
and decomposed them into products of triangular matrices, companion matrices, and
commutators. In particular, they proved that if n ≥ 3, and A is a commutative ring,
then every matrix in SL(n, A) is a product of two commutators.

Definition 4.1.Let G be a group. The least integer c(G) ≥ 0 such that every product

of commutators is the product of s commutators is called the commutator length of G.

If no such an s exists, then c(G) = ∞.
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Note that c(G) = 0 ⇔ G is commutative. The question whether c(G) ≤ 1, i.e.
every element of the commutator subgroup [G, G] is a single commutator, is of particular
interest. This question was first studied by Shoda in 1936 [9].

In 1951 Ore conjectured [8] that c(G) ≤ 1 for every finite simple group, and he showed
for the series of the alternating groups that c(An) = 1 if n ≥ 5. Later this was proved
for:

• all finite linear groups with the exception of one or two classes

• nearly all sporadic groups,

• many classes of infinite simple groups, etc.

In 1977 I. M. Isaacs [4] noted that no simple group G is known with c(G) > 1. In par-
ticular, Thompson showed (1961-1962) [10, 11, 12, 13] that c(GL(n, F )) ≤ 1, c(SL(n, F ))
≤ 2, c(PSL(n, F )) ≤ 1, ∀n ≥ 1, where F is a field. He also gave examples of finite perfect
groups G with c(G) = 2, when G = SL(n, R), and R is a ring.

5. Experimental results. There is a strong evidence that Plotkin’s Conjecture 3.1
is true. We give further some results of solving equations of type (3) by computer calcu-
lations (GAP):

1. Using GAP we proved that equations of type (3) can be solved for: PSL(3, 3) and
PSL(2, p) for all primes p < 100.

For the latter case we only run through transvections.

2. We further ask which is the minimal k, and respectively the minimal n for it such
that uk = un has a non-trivial solution in PSL(2, p). The next conjecture is that
Such non-trivial solutions can appear “quite early”. The results are given in the
following table for a prime p < 50 . For p ≥ 13 y runs through the representatives
of the conjugacy classes, x is arbitrary.

3. Let (x, y) be a solution.

∀cy ∈ CG(y), (xcy , ycy) = (xcy , y)

will also be a solution. The above experiments showed that this is the way to obtain
half of the solutions. Moreover, the number of the solutions is either p− 1, or p +1
for a given equation uk = un.

6. Some other problems and results.

1. We could further ask for the probability a given pair of elements (x, y) in a group
G to represent a solution, i.e. to calculate the volume of the variety of solutions:

Let TG be the set of solutions for G = PSL(2, p).

|TG|

|G|2
−→?

p → ∞

This question refers to Asymptotic Theory of Finite Groups.
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G u1=u2 u1=u3 u2=u3 comments |CG(x)| |CG(y)| No.so-
lutions

PSL(2,5) no no no ∀x,∀y

PSL(2,7) |x|=4= p+1

2
∀x,∀y

|y|=3= p−1

2

|u|=4= p+1

2

PSL(2,11) no |x|=6= p+1

2
no ∀x,∀y

|y|=5= p−1

2

|u|=5= p−1

2

PSL(2,13) no no |x|=7= p+1

2
7 6 12=

|y|=3= p−1

4
p−1

|u|=13=p
|xy|=13=p

PSL(2,17) no

|x|=4 9 17
|y|=9 9 8
|u|=4 4 2
|xy|=3 2 17

|x|=2 17 4
|y|=9 2 8
|u|=2 2 9
|xy|=9 17 3

200

PSL(2,19) no no |x|=10= p+1

2
10 20=

|y|=5= p+1

4
p+1

|u|=9= p−1

2

|xy|=19=p

PSL(2,23) no no |x|=11= p−1

2
11 22=

|y|=11= p−1

2
p−1

|u|=2

|xy|=12= p+1

2

PSL(2,29) no no no u1=u4 15 15 30=

|x|=15= p+1

2
p+1

|y|=5
|u|=3

|xy|=14= p−1

2

PSL(2,31) no |x|=16= p+1

2

|x|=2 2 16 15
|y|=15 16 2 2
|u|=2 2 2 2
|xy|=15 16 16 15

250

|y|=5
|u|=5
|xy|=3

PSL(2,37) |x|=19=(p+1)/2 19 18 36=
|y|=6 p−1
|u|=19
|xy|=9

PSL(2,41) no no |x|=20= p−1

2
20 21 42=

|y|=21= p+1

2
p+1

|u|=5
|xy|=7

PSL(2,43) |x|=11= p+1

4
42=

|y|=21= p−1

2
p−1

|u|=21= p−1

2

|xy|=21= p−1

2

PSL(2,47) no

|x|=6 2
|y|=23 23
|u|=24 2
|xy|=24 23

|x|=23= p−1

2
330

|y|=2
|u|=2
|xy|=23
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2. Compute the minimal k, l for which an identity um(x, y) = un(x, y) holds for par-
ticular classes of finite groups. This problem is similar to some previous results of
one of the authors: In [5], Engel invariants have been computed in some groups,
classes of groups and varieties of groups such as some groups of small order; the
class of dihedral groups Dp where p is an odd prime; the soluble locally finite vari-
eties of groups AkAl for k and l powers of one and the same prime number p, and
for k and l coprime integers; the infinite series of simple groups (the alternating
groups An for n > 5 and the special projective groups PSL(2, q) for some of the
first groups in the series).

3. There are several results concerning characterization of soluble groups in terms of
two-variable identities [6, 7, 1]. Namely, it was proved in [6, 7] that if a finite group
G satisfies for some n the identity e2 ≡ en, where {ei} is the sequence of Engel
words, then G is soluble. However, it is easy to find a soluble group satisfying no
identity of the form e2 ≡ em. For example, take G a finite nilpotent group of class 3
such that the identity e2 ≡ 1 does not hold in G. Since e3 ≡ 1, the group G cannot
satisfy any identity of the form e2 ≡ em. However, G is soluble.

In [1] it was proved that the identity e3 ≡ en can hold in certain finite simple groups
such as PSL(2, 4), PSL(2, 8), etc. Let us also mention a pioneer result of N. Gupta
[3]: any finite group satisfying the identity e1 ≡ en is abelian.

We can ask for similar characterizations for our new identities.
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SUTWVYXOZ[Z/\^]`_aZcbedDfNTNgRhOZ[Z`i^f^j+kDX^jml^f^j
nYXNoNp^j�Z[fN\^qOpNTadDZcf^dDf^j
dDTYnWjm_rj�\�bejYsJT�dDTYnWjm_rjDg
kaTYnWjWdDTtoriDTe_aqDZedD_aTmXOuY_rjwvxfNncZcqDTe_aTadDT1dNy{zUiDZcbedD_aTtTad
fOuWkNjYkr_rjtbedDZcpNZcfM|N}UVaZckNd
f^j:f^jY~w\O�
dDZw\^]�bcqDZ`iO_rjYfN\^u�f^jYpNTWbcqDZ`i^y?k/VaZwi?j�f^jYsJZcXN\^s�pNTciDTWVYf^j
�OjYX^jYkNdDZcXN\^]�jY�N\^u
]�j�kDX^jml^fN\?dDZ
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GAP
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