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In the presented paper the Pareto optimal distributions are analyzed. The basic con-
cept of welfare economy is examined here – Pareto optimality criterion. We consider
a mathematical model of exchange economy. The presented theorems do not use the
prices of the goods and budgetary limitations of the agents. The theorems are based
only on the utility of the goods and the status quo of the agents.

1. Introduction. Welfare economy is a theory where consumption and production
are examined on one and same scale. The simultaneous existence of a number of con-
sumers and producers equal in rights is taking place under the condition of equilibrium
with optimality distribution of goods of both for consumers and producers. The problems
of equilibrium and optimality are basic for welfare economy.

A basic characteristic of the Equilibrium State is given by the Pareto optimality
criterion. A distribution of goods is Pareto optimal if and only if in the process of
transition into another distribution there is no deterioration of the status quo of the
agents. Measure for the status quo of the agent will be his or her utility function.
Vilfredo Pareto (1878-1923) lays out the criterion: if in the process of distribution of
goods between the agents in an exchange economic system the welfare of one single
agent increases, without decreasing the welfare of all the other agents, then the welfare
of the system as a whole increases. We have the definition: the distribution of goods is
Patero optimal if and only if it is not possible for the welfare of a certain agent to be
improved without involving the worsening of the welfare of another agent.

It is proved that the equilibrium distributions of goods are Pareto optimal. We will
examine a number of characteristics of the Pareto optimality distributions without using
the fact of equilibrium. This is an important issue because Pareto optimality distributions
do not use the prices of the goods and budgetary limitations of the agents.

2. Formulation of the problem. We are examining a mathematical model of
exchange economy with n ≥ 2 agents and m ≥ 2 goods. The agents exchange between
each other goods. Let A be a set of agents, let G be a set of goods, let L = n.m and let
each agent own initial property demonstrated by the vector vi(vi

1, . . . , v
i
j , . . . , v

i
m) ∈ <m

+ ,

where the number vi
j ≥ 0 is the quantity of gj ∈ G property of ai ∈ A. The vector

Ω =

n
∑

i=1

vi we will call the vector of common goods, where Ω(Ω1, Ω2, . . . , Ωm) ∈ <m
+ .
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Definition 1.The set D = {X(x1, x2, . . . , xn) ∈ <L
+ :

n
∑

i=1

xi = Ω} we will call the set

of distributions, where ai ∈ A is owner of xi ∈ <m
+ .

The initial property of the agents is given by the vector V (v1, v2, . . . , vn) ∈ D.

Theorem 1.The set D is nonempty, convex and compact set in <L
+.

From Definition 1 it follows the proof of Theorem 1.
If X ∈ D and ai ∈ A, then let us denote Pi(X) = xi

(

xi
1, x

i
2, . . . , x

i
m

)

and let each
agent ai ∈ A has an utility function ui : D → <+ with the following characteristics:

Assumption 1. The function ui is continuous in D;
Assumption 2. If X, Y ∈ D and Pi(X) = Pi(Y ), then ui(X) = ui(Y );
Assumption 3. If X, Y ∈ D, Pi(X) 6= Pi(Y ) and Pi(X) ≥ Pi(Y ), then ui(X) > ui(Y );
Assumption 4. If X, Y ∈ D, Pi(X) 6= Pi(Y ), ui(Y ) > ui(X) and α ∈ (0; 1), then

ui(αX + (1 − α)Y ) > ui(X).

Definition 2.The function U : D → <n
+ we will call collective utility function if

and only if U(X) = (u1(X), u2(X), . . . , un(X)) for X ∈ D, where the functions ui for

i = 1, . . . , n are the utility functions of the agents.

Theorem 2.The function U is continuous in D.

Proof. From the continuity of the functions ui for i = 1, . . . , n in D it follows that
the function U is continuous in D. �

Definition 3.We will call the distribution X ∈ D Pareto optimal if and only if

∃Y ∈ D such that ∀ai ∈ A, ui(Y ) ≥ ui(X) and ∃ak ∈ A, uk(Y ) > uk(X). The set of

Pareto optimal distributions of D will be denoted by P .

Therefore we have X ∈ P if and only if {Y ∈ D : ∀ai ∈ A, ui(Y ) ≥ ui(X) and
∃ak ∈ A, uk(Y ) > uk(X)} = ∅.

It becomes clear from the definition that the Pareto optimality is not related to the
prices of goods, but is defined only by the utility functions of the agents.

3. Existence of Pareto optimality.

Definition 4.Let C = {{ci ≥ 0 : i = 1, . . . , n} ⊂ < :
n
∑

i=1

ci = 1}. We will call

Dc = {X ∈ D :

n
∑

i=1

ciui (X) ≥
n

∑

i=1

ciui (Y ) ∀Y ∈ D, c ∈ C}

the set of maximal distributions of D.

Theorem 3.The set Dc is nonempty and compact subset of D.

Proof. Let function f :→ <+ is defined by f(X) =
n
∑

i=1

ciui (X) for X ∈ D. From the

continuity of the functions ui for i = 1, . . . , n it follows that the function f is continuous
in D. The set D is compact, therefore ∃X ∈ D such that f(X) = sup{f(Y ) : Y ∈ D}.
We have Dc 6= ∅. From the continuity of the function f it follows that the set Dc is a
closed subset of the compact set D, therefore Dc is a compact subset of D. The theorem
is proved. �
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Theorem 4. Dc ⊂ P .

Proof. Let X ∈ Dc and let us assume that X /∈ P . Then ∃Y ∈ D such that ∀ai ∈ A

ui(Y ) ≥ ui(X) and ∃ak ∈ A uk(Y ) > uk(X) and let f(X) =
n
∑

i=1

ciui (X), therefore

f(Y ) ≥ f(X).

If ck > 0, then f(Y ) > f(X), which is in contradiction with X ∈ Dc.

If ck = 0, then f(Y ) =
n
∑

i=1

ciui (Y ) =
n
∑

i=1,i6=k

ciui (Y ). From uk(Y ) > uk(X) ≥ 0 it

follows that Pk(Y ) 6= 0. From
n
∑

i=1

ci = 1 it follows that ∃aj ∈ A such that cj > 0. From

Pk(Y ) 6= 0 it follows that Pj(Y ) 6= Ω. Therefore ∃Z ∈ D such that Pj(Z) > Pj(Y ),
Pk(Z) < Pk(Y ) and Pi(Z) = Pi(Y ) for i 6= j and i 6= k. Finally, we have f(Z) > f(Y ) ≥
f(X), which is in contradiction with X ∈ Dc.

We have in result Dc ⊂ P . The theorem is proved. �

From the above two theorems it follows that the Pareto optimal distributions exist in
the economic system and

⋃

c∈C

Dc ⊂ P .

4. Convex functions and Pareto optimality

Definition 5. If X ∈ D and ai ∈ A, then the set Ri(X) = {Y ∈ D : ui(Y ) ≥ ui(X)}
we will call set of preferences of ai ∈ A.

It is clear that the set Ri(X) is compact and X ∈ Ri(X) ∀ai ∈ A, therefore
n
⋂

i=1

Ri (X)

is compact and X ∈
n
⋂

i=1

Ri (X).

Theorem 5.Let X ∈ D, X ∈ P if and only if {X} =
n
⋂

i=1

Ri (X).

Proof. Let X ∈ P . We have X ∈ Ri(X) ∀ai ∈ A, therefore {X} ⊂
n
⋂

i=1

Ri (X). Let

Y ∈
n
⋂

i=1

Ri (X), α ∈ (0, 1) and Z = αX + (1 − α)Y and let us assume that X 6= Y .

If ai ∈ A and Pi(X) = Pi(Y ), then Pi(Z) = Pi(X). Therefore ui(Z) = ui(X).
If ai ∈ A and Pi(X) 6= Pi(Y ), then ui(Z) > min(ui(X), ui(Y )) = ui(X).

From X 6= Y it follows that ∃ak ∈ A such that Pk(X) 6= Pk(Y ). In result, ∀ai ∈ A
ui(Z) ≥ ui(X) and uk(Z) > uk(X), which contradicts the condition X ∈ P . Therefore

X = Y , i.e.
n
⋂

i=1

Ri(X) ⊂ {X}. Finally, we have {X} =
n
⋂

i=1

Ri(X).

Let {X} =
n
⋂

i=1

Ri (X). Let us assume that X /∈ P , therefore ∃Y ∈ D such that

∀ai ∈ A ui(Y ) ≥ ui(X) and ∃ak ∈ A uk(Y ) > uk(X). In result Y ∈
n
⋂

i=1

Ri (X) = {X},

therefore X = Y . This contradicts uk(Y ) > uk(X), therefore X ∈ P . The theorem is
proved. �

Definition 6.The utility function ui of ai ∈ A is convex if and only if ∀X, Y ∈ D,

Pi(X) 6= Pi(Y ) and ∀α ∈ [0; 1], ui(αX + (1 − α)Y ) ≥ αui(X) + (1 − α)ui(Y ).
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Theorem 6. If the utility functions of the agents ui for i = 1 . . . , n are convex, then
⋃

c∈C

Dc = P .

Proof. Let X ∈ P and S = {U(X) + s : s ∈ <n
+\{0}}. It is clear that S 6= ∅.

We will prove that the set S is convex. Let S1, S2 ∈ S and α ∈ [0, 1], then ∃s1, s2 ∈
<n

+\{0} such that S1 = U(X) + s1 and S2 = U(X) + s2. For this convex combnination
we have αS1 +(1−α)S2 = U(X) + (αs1 + (1−α)s2), therefore αS1 + (1−α)S2 ∈ S, i.e.
the set S is convex.

Let B = {U(Y ) − b : Y ∈ D and b ∈ <n
+\{0}}. It is clear that B 6= ∅.

We will prove that the set B is convex. Let B1, B2 ∈ B and α ∈ [0; 1], then ∃Y1, Y2 ∈ D
and ∃b1, b2 ∈ <n

+\{0} such that B1 = U(Y1) − b1 and B2 = U(Y2) − b2. For its convex
combnination we have αB1 + (1− α)B2 = (αU(Y1) + (1− α)U(Y2))− (αb1 + (1− α)b2).
Let Y = αY1 + (1 − α)Y2. From the convexity of the set D it follows that Y ∈ D.

If ai ∈ A and Pi(Y1) = Pi(Y2), then ui(Y ) = ui(Y1) = ui(Y2).

If ai ∈ A and Pi(Y1) 6= Pi(Y2), then from the convexity of the utility function ui it
follows that ui(Y ) ≥ αui(Y1) + (1 − α)ui(Y2).

Finally, we have U(Y ) ≥ αU(Y1) + (1 − α)U(Y2).

Let b = U(Y ) − (αU(Y1) + (1 − α)U(Y2)), therefore b ∈ <n
+\{0}. In result we have

αB1 + (1 − α)B2 = U(Y ) − (αb1 + (1 − α)b2 + b), therefore αB1 + (1 − α)B2 ∈ B, i.e.
the set B is convex.

We will prove that S ∩ B = ∅. Let us assume that S ∩ B 6= ∅, therefore ∃Y ∈ D and
∃s, b ∈ <n

+\{0} such that U(X) + s = U(Y ) − b. From s, b 6= 0 it follows that ∀ai ∈ A
ui(Y ) ≥ ui(X) and ∃ak ∈ A uk(Y ) > uk(X), which contradicts the condition X ∈ P ,
therefore S ∩ B = ∅.

From the theorem for detachability of sets it follows that ∃{qi : i = 1, . . . , n} ⊂ <

such that
n
∑

i=1

q2
i 6= 0 and ∃c ∈ < such that ∀s(s1, s2, . . . , sn), b(b1, b2, . . . , bn) ∈ <n

+\{0}

we have
n

∑

i=1

qi(ui(X) + si) ≥ c ≥
n

∑

i=1

qi(ui(Y ) − bi) for all Y ∈ D.

Therefore
∑n

i=1
qiui ≥ c ≥

∑n

i=1
qiui(Y ) for all Y ∈ D and we have in result an

equality at X = Y .

We will prove that qi ≥ 0 ∀i ∈ [1, n]. The inequality
∑n

i=1
qi(ui(X) + si) ≥ c holds

for s(s1, s2, . . . , sn) ∈ <n
+\{0}. Let us assume that qk < 0 for k ∈ [1, n]. The inequality

n
∑

i=1

qi (ui (X) + si) ≥ c holds for

sk >
c −

∑n

i=1,j 6=k qi(ui(X) + si)

qk

− uk(X).

In result we have

uk(X) + sk >
c −

∑n

i=1,j 6=k qi(ui(X) + si)

qk

− uk(X);

qk(uk(X) + sk) < c −
n

∑

i=1,j 6=k

qi(ui(X) + si);
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n
∑

i=1,j 6=k

qi(ui(X) + si) < c.

This leads to a contradiction, therefore qi ≥ 0 ∀i ∈ [1, n]. From
n
∑

i=1

q2
i 6= 0 it follows

that
n
∑

i=1

qi > 0. Let ci = qi

n#
i=1

qi

≥ 0 for i = 1, . . . , n, therefore
n
∑

i=1

ci = 1 and
n
∑

i=1

ciui (X) ≥

n
∑

i=1

ciui (Y ) for all Y ∈ D.

Finally, we have X∈
⋃

c∈C

Dc. From theorem 4 it follows that
⋃

c∈C

Dc = P . The theorem

is proved. �
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