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In the present paper, some results about the multicriterial antagonistic games with
separable pay-off function [1, p. 81-91] have been generalized in Lemma 2 and Theo-
rem 1. Theorem 2 finds a more wide class of games, including the separable ones, for
which Lemma 2 and Theorem 1 are valid. As a corollary here, the results of [1] have
been obtained. Example 1 shows that Theorem 2 cannot be generalized for arbitrary
vectors with nonnegative components. Theorem 1 cannot be generalized for the class
of the quadratic multicriterial antagonistic games, considered in Example 2, even in
the case when ε is zero vector. A similar quadratic game, which does not satisfy the
conditions of Lemma 2 and Theorem 1 has been considered in Example 3, but the
assertions of Theorem 1 are true for this game.

Introduction. In the present paper, some properties of some types multicriterial
antagonistic games have been considered. The different optimal solutions of the multi-
criterial control problems and their properties have been studied in detail in [5]. More
of the results, presented in [5], are transferred to the multicriterial antagonistic games.
For this purpose, the corresponding solutions of a multicriterial antagonistic game are
defined. As a solution, there can be taken both the vector Slater, Pareto, etc. sad-
dle (ε-saddle) point and the strategy, corresponding to the vector (Slater, Pareto, etc.)
maximin (minimax) or ε-maximin (ε-minimax) solution. All these solutions have been
defined and well studied and described, for example in [1]. A lot of these results are
applied for differential games in [3,2,4].

1. Basic definitions and assumptions. We consider an antagonistic multicriterial
game with a pay-off function

(1) f(x, y) = (f1(x, y), . . . , fN (x, y)), x ∈ X, y ∈ Y.

The first player, choosing the strategy x ∈ X , strives to maximize all the components of
the vector pay-off function (1) and the second player, choosing y ∈ Y , strives to minimize
all these components. We suppose also, that X ⊂ R

m and Y ⊂ R
n are bounded sets and

the functions fj(x, y) are defined, bounded and continuous for all (x, y) ∈ X × Y .

We suppose that ε ∈ R
N
= , i.e. the arbitrary fixed vector of R

N has nonnegative
components.

Definition 1.The point (xε
s, y

ε
s) is called an ε-Slater saddle point for the game

(2)
Γ = 〈X,Y, f(x, y)〉, if
f(x, yε

s) − ε 6> f(xε
s, y

ε
s) 6> f(xε

s, y) + ε ∀ x ∈ X and ∀ y ∈ Y.
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The set of all vector ε-Slater saddle points is denoted by Sε.

Definition 2.Let x ∈ X (y ∈ Y ) be an arbitrary point. Then the set

Y ε
s (x) = {y∗ ∈ Y

∣

∣f(x, y∗) 6> f(x, y) + ε, ∀y ∈ Y }

(Xε
s (y) = {x∗ ∈ X

∣

∣f(x∗, y) 6< f(x, y) − ε, ∀x ∈ X}) represents the set of all ε-Slater
minimal (maximal) strategies with relation to f , [1, p. 11].

Definition 3. Ŷ ε
s = {x̂∗ ∈ X

∣

∣f(x̂∗, ŷε
s(x̂

∗)) 6< f(x, yε
s(x)) − ε, ∀x ∈ X, yε

s(x) ∈
Y ε

s (x), ŷε
s(x̂

∗) ∈ Y ε
s (x̂∗)} is the set of all vector ε-Slater maximin solutions (strategies)

for game (2). By analogy, the set of all vector ε-Slater minimax solutions (strategies) X̂ε
s

for game (2) is defined, [1, p. 12].

Everywhere it is supposed that if ε ≡ 0N , i.e. ε is zero vector in R
N , then X and

Y are compact subsets in R
m, respectively in R

n. In this case we shall refer to (vector)
Slater saddle point, Slater maximin solution, etc. [1, p.21, 11-12], instead of (vector)
ε-Slater saddle point, ε-Slater maximin solution, etc. as in Definitions 1-3, and the sets
Sε, Y ε

s (x), Xε
s (y), Ŷ ε

s and X̂ε
s given in Definitions 1-3, we shall denote by S, Ys(x), Xs(y),

Ŷs and X̂s respectively.

2. Formulations and proofs of the results obtained. By analogy with [5, p.158,
142], it is proved the following

Lemma 1.For each fixed vector ε ∈ R
N
= , x ∈ X and y ∈ Y , the sets of Definition 2

Y ε
s (x) and Xε

s (y) are non-empty. If ε ≡ 0N and X and Y are compact sets, then Ys(x)
and Xs(y) are non-empty and compact sets.

From Definitions 1-2 the following assertion has been obtained:

Lemma 2.Let us suppose in addition to general assumptions in Section 1, that

a) the set Y ε
s (x) does not depend on x, i.e. Y ε

s (x) = Y ε
s ∀x ∈ X. Then Sε =

{(x, y)
∣

∣x ∈ Xε
s (y), y ∈ Y ε

s },
b) the set Xε

s (y) does not depend on y, i.e. Xε
s (y) = Xε

s ∀y ∈ Y . Then Sε =
{(x, y)

∣

∣x ∈ Xε
s , y ∈ Y ε

s (x)}.
If Y ε

s (x) = Y ε
s ∀x ∈ X and Xε

s (y) = Xε
s ∀y ∈ Y , then Sε = Xε

s × Y ε
s .

As in [1], we denote by Frs
εM (Frε

sM) the set of all ε-Slater maximal (minimal)
points of the arbitrary set M ⊂ R

N . Also
⋃

MAX
x∈X

s
ε

⋃

MIN
y∈Y

s
εf(x, y) represents the set

of all the ε-Slater maximins, analogous presentation about the set of all the ε-Slater
minimaxes is valid, [1, p. 12].

Theorem 1.For the same assumptions as in Lemma 2,

a) Frs
εf(Sε) =

⋃

MAX
x∈X

s
ε

⋃

MIN
y∈Y

s
εf(x, y) for Y ε

s (x) = Y ε
s ∀x ∈ X,

b) Frε
sf(Sε) =

⋃

MIN
y∈Y

s
ε

⋃

MAX
x∈X

s
εf(x, y) for Xε

s (y) = Xε
s ∀y ∈ Y .

Proof. We give the proof only of the first assertion a). We denote

M = f(Sε) = {f(x, y)
∣

∣x ∈ Xε
s (y), y ∈ Y ε

s }, D = {f(x, y)
∣

∣x ∈ X, y ∈ Y ε
s }.
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Then

(3)

A
def
=

⋃

MAX
x∈X

s
ε

⋃

MIN
y∈Y

s
εf(x, y) =

⋃

MAX
x∈X

s
ε

⋃

yε

s
∈Y ε

s

f (x, yε
s)

=
⋃

{a ∈ D : a 6< f (x, yε
s) − ε, ∀x ∈ X, ∀yε

s ∈ Y ε
s }

=
⋃

{a ∈M : a 6< f (x, yε
s) − ε, ∀x ∈ X, ∀yε

s ∈ Y ε
s } ,

(4) B
def
= Frs

εf(Sε) =
⋃

{b ∈M : b 6< f(x, y) − ε, ∀x ∈ Xε
s (y), ∀y ∈ Y ε

s } .

From (3) and (4) it follows that A ⊆ B.
Now, let us suppose that ∃b ∈ B and b /∈ A. Then

(5) b ∈M : b < f
(

x(1), y(1)ε
s

)

− ε for some x(1) ∈ X and y(1)ε
s ∈ Y ε

s .

We consider the set X1 = {x ∈ X : b+ δ5 f
(

x, y(1)ε
s

)

− ε}. Then from (5), ∅ 6= X1 ⊆ X
for “sufficiently small vector” δ > 0N . When ε = 0N , X and X1 are compact sets. From
Lemma 1 the set X1

ε
s

(

y(1)ε
s

)

6= ∅ ∀ε ∈ R
N
= . Thus let x̂ ∈ X1

ε
s

(

y(1)ε
s

)

. It is easy to prove,

that x̂ ∈ Xε
s

(

y(1)ε
s

)

. Hence

(6) b < f
(

x̂, y(1)ε
s

)

− ε, where x̂ ∈ Xε
s

(

y(1)ε
s

)

, y(1)ε
s ∈ Y ε

s .

But (6) shows that b cannot belong to set (4), i.e. b /∈ B. This contradiction is due
to the supposition that ∃b ∈ B such that b /∈ A, which is not true.

Thus it is proved that B ⊆ A and hence A ≡ B. Theorem 1 is proved. �

Theorem 2.Let the components of (1) fj(x, y) = gj(ϕj(x), ψj(y)) for j = 1, . . . , k
and fj(x, y) = ϕj(x) − ψj(y) for j = k + 1, . . . , N , (for arbitrary k = 0, . . . , N), the

vector ε = (0, . . . , 0, εk+1, . . . , εN) ∈ R
N
= is such that εj = 0 are arbitrary fixed numbers

for ∀j = k + 1, . . . , N . Let the bounded functions ϕj(x) ∈ C(X) and ψj(y) ∈ C(Y ),

ϕj(X)
def
= {ϕj(x)

∣

∣x ∈ X} ⊂ R and ψj(Y )
def
= {ψj(y)

∣

∣y ∈ Y } ⊂ R for ∀j = 1, . . . , N , the
bounded functions gj(s, t) ∈ C(ϕj(X) × ψj(Y )) are strictly monotonous with respect to
t for fixed s (s for fixed t) for ∀(s, t) ∈ (ϕj(X), ψj(Y )) and ∀j = 1, . . . , k. Then the set
Y ε

s (x) (Xε
s (y)) does not depend on x ∈ X (y ∈ Y ). For the game of type (2) thus defined,

Lemma 2 and Theorem 1 are valid.

Proof. Let us suppose that gj(s, t) are strictly increasing with respect to s for fixed
t (strictly decreasing with respect to t for fixed s) for ∀(s, t) ∈ (ϕj(X), ψj(Y )) and
∀j = 1, . . . , k. Let y ∈ Y be an arbitrary point. We shall show that

(7) x0 ∈ Xε
s (y) ⇐⇒ x0 ∈ X and ϕ(x0) ∈ Frs

εϕ(X),

where ϕ(x) = (ϕ1(x), . . . , ϕN (x)) for x ∈ X and ϕ(X) = (ϕ1(X), . . . , ϕN (X)). Indeed,
from Definition 2,

x0 ∈ Xε
s (y) ⇐⇒ x0 ∈ X and f(x0, y) 6< f(x, y) − ε∀x ∈ X,

i.e.

(8) gj0(ϕj0(x
0), ψj0 (y)) = gj0(ϕj0 (x), ψj0 (y)) for some j0 = 1, . . . , k,

217



or

(9) ϕj1(x
0) =ϕj1(x) − εj1 for some j1 = k + 1, . . . , N,

where j0 (or j1) depends on x ∈ X . But (8) is valid if and only if ϕj0(x
0) =ϕj0(x).

Therefore (8) or (9) are valid ⇐⇒ (ϕ1(x
0), . . . , ϕN (x0)) 6< (ϕ1(x), . . . , ϕN (x)) − ε for

thus defined vector ε and arbitrary point x ∈ X , which proves (7). Hence the set X ε
s (y)

does not depend on y ∈ Y . The assertion about Y ε
s (x) is proved by analogy.

In the general case, we replace gj(s, t), ϕj(x) and ψj(y) by the functions ĝj(s, t) =

gj(±s,±t), ϕ̂j(x) = ±ϕj(x) and ψ̂j(y) = ±ψj(y) so that ĝj(ϕ̂j(x), ψ̂j(y)) ≡ gj(ϕj(x),
ψj(y)) = fj(x, y) ∀(x, y) ∈ X×Y and ĝj(s, t) are strictly increasing with respect to s for

fixed t (strictly decreasing with respect to t for fixed s) for ∀(s, t) ∈ (ϕ̂j(X), ψ̂j(Y )) and
∀j = 1, . . . , k. Thus the considerations are reduced to the previous case. Theorem 2 is
proved. �

Corollary 1. Let f(x, y) = ϕ(x) + ψ(y), where ϕ(x) and ψ(y) are vector functions,
defined, bounded and continuous for x ∈ X and y ∈ Y respectively. Then for ∀ε ∈ R

N
= ,

∀x ∈ X and ∀y ∈ Y , the sets Y ε
s (x) and Xε

s (y) do not depend on x and y. For such a
game Lemma 2 and Theorem 1 are valid, see [1, p.81-85].

3. Examples.

Example 1.Let f(x, y) = (xy, x + y), where X = Y = [δ0, 1], δ0 > 0 and ε > 0 are
sufficiently small numbers, such that 0 < δ0 5 ε < 1/4 and ~ε = (ε, ε).

Let us note that the functional f(x, y) satisfies the conditions of Theorem 2. Using
Definitions 1-3 it is proved that: 1) the point (x, ε/x) is ~ε-Slater saddle point if and only
if x ∈ [1/2, 1] and 2) the point (x, ε/x) corresponds to ~ε-Slater maximin solution for
∀ x ∈ [ε, 1].

Thus it is obtained that there exists an ~ε-Slater maximin (ε, x + ε/x) /∈ f(Sε) for
some x ∈ [ε, 1/2). Thus, for so defined antagonistic game, Theorem 1a) is not valid for
so defined vector ~ε.

On the other hand, if we replace the above sets of strategies with the sets X = Y =
[1, 2], then the sets Y ~ε

s (x) and X~ε
s (y) do not depend on x and y for ∀x ∈ X and ∀y ∈ Y ,

i.e. Lemma 2 and Theorem 1 are valid for this case.

Example 2.Let us consider the following bicriterial antagonistic game with quadratic
pay-off function f(x, y) = (f1(x, y), f2(x, y)), where

f1(x, y) = −x2 − 2xy + y2, f2(x, y) = −x2 + xy + y2 and X = Y = [0, 1].

Using Definitions 1-3, for this game it is proved that: 1) the sets Ys(x) = [0, x] ∀x ∈ X ,
Xs(y) = [0, y/2] ∀y ∈ Y and S = (0, 0), 2) all the points–pairs of strategies, which
correspond to Slater maximin (minimax) solutions are of the form {(x, x)

∣

∣∀x ∈ [0, 1]}

({(y/2, y)
∣

∣∀y ∈ [0, 1]}).
The considered game is interesting for the fact, that for the scalar functional f(k) =

kf1 + (1− k)f2, (0, 0) ∈ X × Y is the unique saddle point ∀k ∈ [0, 1]. At the same time,
the sets of all Slater maximins and minimaxes are of the form {(−2x2, x2)

∣

∣∀x ∈ [0, 1]}
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and {(−y2/4, 5y2/4)
∣

∣∀y ∈ [0, 1]}, respectively. Thus the assertions of Theorem 1 are not
true for this game.

Example 3.Let us consider the following quadratic antagonistic game of the previous
type, for which

f(x, y) = (−x2 − xy + y2,−x2 + xy + y2), where X = Y = [0, 1].

By analogy, it is proved that the sets S = (0, 0), Ŷs = X̂s = {0}, Ys(x) = [0, x/2]
∀x ∈ X and Xs(y) = [0, y/2] ∀y ∈ Y , i.e. this game does not satisfy the conditions of
Theorem 1. But the assertions of Theorem 1 are true for this game.
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