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In the present paper, some results about the multicriterial antagonistic games with
separable pay-off function [1, p. 81-91] have been generalized in Lemma 2 and Theo-
rem 1. Theorem 2 finds a more wide class of games, including the separable ones, for
which Lemma 2 and Theorem 1 are valid. As a corollary here, the results of [1] have
been obtained. Example 1 shows that Theorem 2 cannot be generalized for arbitrary
vectors with nonnegative components. Theorem 1 cannot be generalized for the class
of the quadratic multicriterial antagonistic games, considered in Example 2, even in
the case when ¢ is zero vector. A similar quadratic game, which does not satisfy the
conditions of Lemma 2 and Theorem 1 has been considered in Example 3, but the
assertions of Theorem 1 are true for this game.

Introduction. In the present paper, some properties of some types multicriterial
antagonistic games have been considered. The different optimal solutions of the multi-
criterial control problems and their properties have been studied in detail in [5]. More
of the results, presented in [5], are transferred to the multicriterial antagonistic games.
For this purpose, the corresponding solutions of a multicriterial antagonistic game are
defined. As a solution, there can be taken both the vector Slater, Pareto, etc. sad-
dle (e-saddle) point and the strategy, corresponding to the vector (Slater, Pareto, etc.)
maximin (minimax) or e-maximin (e-minimax) solution. All these solutions have been
defined and well studied and described, for example in [1]. A lot of these results are
applied for differential games in [3,2,4].

1. Basic definitions and assumptions. We consider an antagonistic multicriterial
game with a pay-off function

(1) f(x,y)=(f1(ai,y),--.,f1v(x,y)), reX, yey.

The first player, choosing the strategy = € X, strives to maximize all the components of
the vector pay-off function (1) and the second player, choosing y € Y, strives to minimize
all these components. We suppose also, that X C R™ and Y C R" are bounded sets and
the functions f;(z,y) are defined, bounded and continuous for all (z,y) € X x Y.

We suppose that ¢ € RZZV , i.e. the arbitrary fixed vector of RY has nonnegative
components. N

Definition 1. The point (x5, yS) is called an e-Slater saddle point for the game
['= (XY, f(z,y)), if

@) F@,ye) — ¢ % FaSyl) # faSy) +e Vo e X and ¥y €Y,
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The set of all vector e-Slater saddle points is denoted by S°€.
Definition 2. Let x € X (y € Y) be an arbitrary point. Then the set

Yse(x) - {y* € Y‘f(:c,y*) ?é f(‘ray) +Ea Vy € Y}

(Xe(y) = {a* € X‘f(:c*,y) £ f(z,y) — e, Vz € X}) represents the set of all e-Slater
minimal (maximal) strategies with relation to f, [1, p. 11].

Definition 3.Y: = {i* ¢ X‘f(i*,gjf(:i*)) £ flz,8(x)) — e, Vo € X, yi(z) €
Yi(x), 95(2*) € YE(&*)} is the set of all vector e-Slater maximin solutions (strategies)
for game (2). By analogy, the set of all vector e-Slater minimaz solutions (strategies) X'SE
for game (2) is defined, [1, p. 12].

Everywhere it is supposed that if ¢ = Oy, i.e. € is zero vector in RN , then X and
Y are compact subsets in R™, respectively in R". In this case we shall refer to (vector)
Slater saddle point, Slater maximin solution, etc. [1, p.21, 11-12], instead of (vector)
e-Slater saddle point, e-Slater maximin solution, etc. as in Definitions 1-3, and the sets
5S¢, YE(x), XE(y), YE and X¢ given in Definitions 1-3, we shall denote by S, Y (), X,(y),
Yg and X s respectively.

2. Formulations and proofs of the results obtained. By analogy with [5, p.158,
142], it is proved the following

Lemma 1. For each fized vector ¢ € Rg, x € X and y € Y, the sets of Definition 2
YE(x) and XE(y) are non-empty. If e = On and X and Y are compact sets, then Ys(x)
and X4 (y) are non-empty and compact sets.

From Definitions 1-2 the following assertion has been obtained:

Lemma 2. Let us suppose in addition to general assumptions in Section 1, that

a) the set YE(x) does not depend on x, ie. Yi(x) = YE Vo € X. Then S° =

{(z,y)|z € XJ(y), y € Y5},
b) the set XE(y) does not depend on y, i.e. X:(y) = X: Vy € Y. Then S¢ =

{(z,y)|z € X5, y € Yi(2)}.
IfYE(x) =Y Ve e X and XE(y) = XS Vy €Y, then S = XE x YE.

As in [1], we denote by FriM (FréM) the set of all e-Slater maximal (minimal)
points of the arbitrary set M c RY. Also |J MA)g( U MlyNgf(x, y) represents the set
Te ye

of all the e-Slater maximins, analogous presentation about the set of all the e-Slater
minimaxes is valid, [1, p. 12].

Theorem 1. For the same assumptions as in Lemma 2,
@) Fref(5%) = UMAX sUMIN £ f(,y) for Y (2) = Y Vo € X,
e ye

b) Frif(59) :UMefgviUMEA)ngf(w,y) Jor XZ(y) = XS vy eY.
y x

Proof. We give the proof only of the first assertion a). We denote

M= f(S) ={f(z,y)|lr € Xi(y), ye Y},  D={f(zy)|lr € X, ye¥s}
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A Y UMAX S| UMINS —|UMAX® c

; U 1A U 1] $f(z,y)=U 14 Eyignsf(x,ys)
(3) = U{aeD:as f(x,y5)—¢, Vz e X, Vys € YF}
= UfaeM:aL f(x,ys) —¢, Vo€ X, Vy; € Y},

(4) BE Frif(s°) = J{be M b2 fz,y) —¢, Yo € X(y), Yy € Vi)

From (3) and (4) it follows that A C B.
Now, let us suppose that 3b € B and b ¢ A. Then

(5) beM:b< f (:c(l),y(l)i) — ¢ for some 2 € X and y(V< € Y¢.

We consider the set X; = {z € X : b+ < f (z,yV5) —e}. Then from (5), ) # X; C X
for “sufficiently small vector” ¢ > 0. When € = Oy, X and X; are compact sets. From
Lemma 1 the set X (y(l)i) #0 Ve e Rg. Thus let & € X;§ (y(l)i). It is easy to prove,

that & € X¢ (y(M¢). Hence
(6) b<f (:z,y<1>§) — ¢, where & € X° (y<1>§) , ye e vE,

But (6) shows that b cannot belong to set (4), i.e. b ¢ B. This contradiction is due
to the supposition that 3b € B such that b ¢ A, which is not true.

Thus it is proved that B C A and hence A = B. Theorem 1 is proved. O

Theorem 2. Let the components of (1) fi(z,y) = g;(p;(x),¢¥;(y)) for j =1,....k
and fi(z,y) = pj(x) —Y;(y) for j = k+1,...,N, (for arbitrary k = 0,...,N), the
vector € = (0,...,0,6k41,...,6N) € RJZV is such that €; 20 are arbitrary fized numbers

for ¥j = k+1,...,N. Let the bounded functions ¢;(z) € C(X) and ¢;(y) € C(Y),
0i(X) € {p;(@)|r € X} CR and ¢;(Y) & {0;(y)|y € Y} CR forVj =1,...,N, the
bounded functions g;(s,t) € C(p;(X) x ¢;(Y)) are strictly monotonous with respect to
t for fized s (s for fized t) for ¥(s,t) € (¢;(X),¢;(Y)) and ¥Vj =1,...,k. Then the set
YZi(z) (XZ(y)) does not depend onz € X (y € Y). For the game of type (2) thus defined,
Lemma 2 and Theorem 1 are valid.

Proof. Let us suppose that g;(s,t) are strictly increasing with respect to s for fixed
t (strictly decreasing with respect to ¢ for fixed s) for V(s,t) € (¢;(X),¢;(Y)) and
Vi=1,...,k. Let y € Y be an arbitrary point. We shall show that

(7) ' € X(y) <= 2° € X and ¢(2°) € Frip(X),

where p(z) = (¢1(2),...,pn(x)) for z € X and o(X) = (p1(X),...,on(X)). Indeed,
from Definition 2,

Y € XS(y) <= w0 € X and f(2°,y) £ f(2,y) — eV € X,
ie.

(8) Gjo ((pjo (x0)7 wjo (y)) z Gjo (@jo (x)v wjo (y)) for some Jo=1,..., k’
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or
(9) 0, (%) = ¢, (2) — g, for some j; =k +1,..., N,

where jo (or ji1) depends on z € X. But (8) is valid if and only if ¢, (2°) = ¢, ().
Therefore (8) or (9) are valid <= (p1(2),...,0on(2%) £ (p1(2),...,pn(x)) — € for
thus defined vector € and arbitrary point « € X, which proves (7). Hence the set X2(y)
does not depend on y € Y. The assertion about Y?(x) is proved by analogy.

In the general case, we replace g;(s,t), @;(x) and ¥;(y) by the functions §;(s,t) =
gj(£s,£t), ¢j(x) = +p;(z) and ¥;(y) = +;(y) so that g;(¢;(z),1;(y)) = g;(v;(),
¥i(y)) = fi(z,y) V(z,y) € X xY and §;(s, t) are strictly increasing with respect to s for
fixed ¢ (strictly decreasing with respect to ¢ for fixed s) for ¥(s,t) € (¢;(X),;(Y)) and
Vj =1,...,k. Thus the considerations are reduced to the previous case. Theorem 2 is
proved. [

Corollary 1. Let f(x,y) = ¢(x) + ¥(y), where p(x) and ¥ (y) are vector functions,
defined, bounded and continuous for x € X and y € Y respectively. Then for Ve € Rg,
Ve € X and Yy € Y, the sets YE(z) and X:(y) do not depend on x and y. For such a
game Lemma 2 and Theorem 1 are valid, see [1, p.81-85].

3. Examples.

Example 1. Let f(z,y) = (zy,x + y), where X =Y = [do,1], o > 0 and & > 0 are
sufficiently small numbers, such that 0 < 6g<e < 1/4 and &= (g,¢).

Let us note that the functional f(z,y) satisfies the conditions of Theorem 2. Using
Definitions 1-3 it is proved that: 1) the point (z,e/x) is £-Slater saddle point if and only
if x € [1/2,1] and 2) the point (x,e/x) corresponds to &-Slater maximin solution for
Vael,l].

Thus it is obtained that there exists an &-Slater maximin (e, + ¢/x) ¢ f(S°¢) for
some z € [g,1/2). Thus, for so defined antagonistic game, Theorem 1la) is not valid for
so defined vector €.

On the other hand, if we replace the above sets of strategies with the sets X =Y =
[1,2], then the sets Y (x) and X2(y) do not depend on x and y for Vo € X and Vy € Y,
i.e. Lemma 2 and Theorem 1 are valid for this case.

Example 2. Let us consider the following bicriterial antagonistic game with quadratic
pay-off function f(x,y) = (f1(z,y), f2(z,y)), where

filz,y) = —2% = 2zy +9°, folz,y) = 2> +ay+y® and X =Y = [0,1].

Using Definitions 1-3, for this game it is proved that: 1) the sets Ys(z) = [0, z] Vo € X,
Xs(y) = [0,y/2] Yy € Y and S = (0,0), 2) all the points—pairs of strategies, which
correspond to Slater maximin (minimax) solutions are of the form {(z,z)|vx € [0,1]}
{(y/2,y)|vy € [0,1]}).

The considered game is interesting for the fact, that for the scalar functional fy =
kfi+ (1 —=k)f2, (0,0) € X x Y is the unique saddle point Vk € [0,1]. At the same time,
the sets of all Slater maximins and minimaxes are of the form {(—222,22)|Vz € [0,1]}
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and {(—y?/4,5y?/4)|Vy € [0,1]}, respectively. Thus the assertions of Theorem 1 are not
true for this game.

Example 3. Let us consider the following quadratic antagonistic game of the previous
type, for which

fla,y) = (=2® —zy +y®, —2® + 2y +y?), where X =Y = [0,1].

By analogy, it is proved that the sets S = (0,0), Yy = X, = {0}, Yi(z) = [0,2/2]
vz € X and Xs(y) = [0,y/2] Vy € Y, i.e. this game does not satisfy the conditions of
Theorem 1. But the assertions of Theorem 1 are true for this game.
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BEKTOPHU CEIJIOBU TOUYKU U MAKCUMMHU II0 CJIEUTHP
ITPY1 HAKOM BNIOOBE MHOI'OKPUTEPMNAJTHNA
AHTATOHUCTUNYHUA UT'PN

Huko Mouc CypyxoH

Jlema 2 m Teopema 1 Ha mpemcraBeHaTa paboTa 0600IIIABAT HIKOU PE3yITATU OT
[1, c. 81-91], oTHACAIIM Ce 32 MHOTOKPUTEPUATIHY AHTATOHNCTUIHA UTPU CBC CENapa-
OenHa minaTexHa ¢yHkiug. TeopeMa 2 HaMUpa €OUH MO-IIUPOK KJIAC UT'PH, BKIIIOUBAIIL
cemapabenHuTe, 32 KouTo ca B cuia Jlema 2 u Teopema 1. KaTo cnencTBue Tyx ce
nonyuasat pesyararure ot [1]. IIpumep 1 nokassa, ue Teopema 2 me moxe ma 6bme
060011IeHa 32 IPOU3BOJIHN BEKTODU € C HEOTPHUIATETHN KoMmoHeHTH. Teopema 1 He
Moxke nma Obme 000O0IleHa 3a KJlaca HAa KBAAPATUYHUTE MHOTOKPUTEDUAJIHU aHTATrO-
HUCTHUYHU Urpu, pasrienanu B [Ipumep 2, naxke u B ciiydasi, KOTaToO € € HYJIEB BEKTOD.
Ilogo6Ha kBampaTWYHA UI'PA, KOSITO HE YIOBIETBOPSBA yciaoBusaTa Ha Jlema 2 u Teo-
pema 1, e pasrnenana B [Ipumep 3, HO 3a Hes ca BepHU TBBpAeHUsITa Ha Teopema 1.
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