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NUMERICAL METHODS FOR SOLVING EQUATIONS

Anna Tomova

In 1977 J. H. Hubbard developed the ideas of A. Cayley (1879) and solved the
Newton—Fourier imaginary problem particular. We solve the Newton—Fourier and the
Chebisheff-Fourier imaginary problems completely. It is known that the application
of Julia set theory is possible to the onestage numerical method like the Newton’s
method for computing solution of the nonlinear equations. The secants method is
twostage numerical method and the application of Julia set theory to it isn’t demon-
strated. Previously we have defined two onestage combinations: the Newton’s—secants
and the Chebisheff’s—secants methods and have used the escape time algorithm to
analyze the application of Julia set theory to these two combinations in some spe-
cial cases. We consider and solve the Newton’s—secants and Tchebicheff’s—secants
imaginary problems completely.

1. Introduction. In 1879 A. Cayley [1] demonstrated the Newton—Fourier imagi-
nary problem for F(z) = 22 — C. In 1977 J. H. Hubbard [3] solved this problem. Using

Cs L u+1
the transformation G(z) = 2 C’z =u, G 1(u) =C2 Z i . he proved [1], [3] that the
z—Cz -
dynamical system
F(z)
1.1 C: =2z -
(1.1) fn(z) == i)

and C' : R(u) = u? are equivalent: R(u) = G o fy o G~} (u) = u?.
In [5] we define the Newton’s—secants method for computing solutions of nonlinear
equation F'(z) = 0: it tell us to consider the dynamical system, associated with F'(z) :
F(fn(2)(n(z) — 2)
1.2 C: fns(z) = fn(z) —
- = IND T RG) - 6
where fy(z) is the Newton transformation, associated with the function F(z) (1.1).
In [6] we define the Chebisheft’s secants method for computing solution of nonlinear
equations: it is to consider the dynamic system:
F(fen(2)(fon(2) - 2)
C': fons(z) = fon(z) — ;
) & F(fen(z)) — F(z)

where

(1.3) fon(z) =2 — F(z) F(2)F"(2)

F(z)  2(F"(2))°
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2. Main results. Consider the polynomial
(2.1) F(z)=2"—-C, neN
and the transformations:
—Cn 1
Gz)= 229 Gy = ot
z4+Cw 1—u
We can prove the following theorems.
Theorem 2.1. The dynamical system fn(z) (1.1) where F(z) is (2.1) and
C 2nu(u+ 1) — (u4+ 1) + (1 —u)”
o 2n(u+ D)l — (w4 1)+ (1 — )
are locally equivalent in sufficiently little circle around each of the n roots of the polyno-
mial F(z) = 2™ — C. Since C is generally a complex number the value Cw is fized as
any of the n - different values of the n - roots of the polynomial (2.1). The fized points

k
of Rp(u) areu=1 andu:—itgﬁ, k=1,2,...,n—1
n

Ry(u) =Go fy oG (u)

Theorem 2.2. The dynamical system (1.3) where F(z) is (2.1) and
(1—u?)"(4n—2)+ (u—1)*"(1 = n) + (u+ 1)*" "1 (4n?u — 3n(u+1) + u + 1)
(1 —u2)m(4n — 2) + (u — 1)2n(1 — n) + (u + 1)2n-1 (4n2 —3n(ut+1) +u+ 1)

are locally equivalent in sufficiently little open circle around each of the n roots of the
polynomial (2.1). The fized points of (2.1) are:

1
7,21;1'771, (n — 1) n .

Rch(u) =

kpi — )=
1, —itg 2 Br=D" 9 a—lm=012. . n—1
n i2pim (n — 1)5
P S L |
Bn—1)w

We can prove two similar theorems about fns(z) and fops(z) in the case (2.1), but
the general formulas for Ry,(u) and Rop(u) are too long and we will publish them later.
Here we will consider only some examples. Consider now the polynomial:

(2.2) F(z)=(:"-0C)', LneN
In the well-known modifications of Newton’s and Chebisheff’s methods for solving the
equation F'(z) = 0 the following dynamic systems are considered:

C: fnm(z)=2— W)
and
. o u(z)  dP()u(2)
C: fonm(2) = 2 uw'(2) 2u/(2)3
where u(z) = ) We can prove two similar theorems about fn,(z) and fopm(z) in

the case (2.2). We obtain that Ry, (z) = Ry(2), but the general formula for Ropm (2)
is too long and we will publish it later. We will consider here only some examples.
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3. Examples and the application of Julia set theory.
)n=2:
a) Newton’s—secants method:

234+ 3Cz
) =50t e

The fixed points of fys(z) are 0, C2 and —C=. The first is repulsive: fns(0) =3
1 1

and the other are attractive:fl’vs(C%) = levs(*cé) = frs(C2) = fi.(—C2) =0, but

3
M (C2) = L (=C2) = Yo This is clear, because Rys(u) = u®. The Julia set for u3

is |u| = 1. This is the second case in the fractal geometry that the formula for Julia set

is the same and too simple (see [1], [2] and [3]).

It is clear too that the order of successive approximations is 3 [4], greater than the
order of Newton’s approximations which is 2 and the order of secants’ approximations
which is 1,61803... [4]. Let’s consider the problem about the computation’s efficiency
in this case [3]. Assume that for the computation of F(z), F'(z) and F(f,(z)) are
necessary 3 computation’s units. Then the efficiency of the Newton’s—secants method
will be 33 & 1,442... that is between the efficiency of the secants methods (1,61803...)
and the sufficiently of the Newton’s method (2% ~ 1,414...). Assume that 4 computation
units are used then the efficiency of the Newton-secants method will be 37 that is more
than the efficiency of the chords method which is one.

b) Chebisheff’s—secants method:
ut(2 +u)
e

The fixed points of Rops(u) are 0,1 and —1. The first is attractive and in a little circle
of 0 Reps(u) and R(u) = u® are equivalent. The order of successive approximations is 4,
this is greater than the Chebisheff’s approximations order which is 3 [4]. The point —1 is
parabolic and the point 1 is repulsive. The fixed point’s type is determined by the facts

11
that R, (0) = R, (0) = R, (0) =0, Rg}ts(o) =48, Rons(1) = 3 ons(—1) = 1.
On the plate 1 the ESCAPE TIME ALGORITHM [2] is used to analyze the trajectories
of RChs (u)
¢) Chebisheft’s-modification method:

u(u? + 3)
Rewn(e) = 3257
2)n=3:
a) Newton’s method:
2u?(u+3
Rov(u) = (u+3)

© 34 3u+3u?—ud

On the plate 2 the escape time algorithm [2] is used to analyze the trajectories of Ry (u).
b) Chebisheff’s method:

4u(u® + 9u? + 15u + 15)

R =
cn(u) 9 + 36u + 45u? + 60u3 + 15u? — 5uS
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Plate 3

Plate 4
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¢) Newton’s—secants method:
Ruva(u) = 4ud (ut + 18u® + 60u? + 54u + 27)
27+ 81u + 171u2 + 189u3 + 177u* + 27ud — 23ub — 9u”
On the plates 3, 4 the ESCAPE TIME ALGORITHM [2] is used to analyze the trajectories
of fns(2) in the case: F(z) =23 — 1.
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ITPOBJIEMUA 1 PEHIEHWAI TIPU ITPNJIO2KEHMUETO HA TEOPUSITA
HA MHO2KECTBATA HA 2KIOJIMA K'bBM EITHOTOYKOBUTE
UNCIIEHUN METOIW 3A PEITABAHE HA YPABHEHUA

Amna Bwakosa TomMmoBa

B 1977 r. Ix. X. Xa6apn passusa unente Ha A. Kenu (1879) u pemasa mvarusep-
uus npobitem na Hioron-®ypume uactmuno. Hue pemapame mmarwsepums npobiiem
Hrioror-®ypue n Uebumes—Pypue B o6mus ciyuai. KakTo e u3BecTHO, MpuioxeHn-
€TO Ha TeOpUATA HA MHOXeCTBATa HA 2K10/11a € B3MOXKHO K'bM €IHOTOYKOBI YNCIICHI
MeTonu, KbKBBTO € MeTonbT Ha HIoTOH 3a pernaBane Ha HeJlnHEHU ypaBHeHus. MeTo-
OBT HA CEKYIIUTE € NBYTOYKOB U OCEra He € MyOIuKyBaHO IPUJIOXKEHNE HA TeOPUITa
Ha MHOXecTBaTa Ha 2Kymua xbM Hero. IIpenBaputenno cme meduHUpaaIM OBE €THO-
TOYKOBU KoMOmHAauuu: Metorn Ha HioTor—cexkymu u Meron na Yebuues—cexyimm u cme
umznomssaiau the ESCAPE TIME ALGORITHM, 3a na ananusupaMe IPUIOKEHUETO
HA TeopUsITa Ha MHOXEeCTBATA HA 2Kro/ma KbM Te3! nBe KOMOMHANNY B HSIKOU IACTHU
ciayyau. Tyx pasrnexname u pemasaHe Ha uMaruHepHus npobiaem na HioTor-cexymm
u Yebumres—cexyinu B OOIIUsI CILyYali.
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