
���������������	�
� � ������������������
����� ����������������	�	����� �!�!"

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001

Proceedings of Thirtieth Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 8–11, 2001

PROBLEMS AND SOLUTIONS BY THE APPLICATION OF

JULIA SET THEORY TO ONESTAGE AND MULTISTAGE

NUMERICAL METHODS FOR SOLVING EQUATIONS

Anna Tomova

In 1977 J. H. Hubbard developed the ideas of A. Cayley (1879) and solved the
Newton–Fourier imaginary problem particular. We solve the Newton–Fourier and the
Chebisheff–Fourier imaginary problems completely. It is known that the application
of Julia set theory is possible to the onestage numerical method like the Newton’s
method for computing solution of the nonlinear equations. The secants method is
twostage numerical method and the application of Julia set theory to it isn’t demon-
strated. Previously we have defined two onestage combinations: the Newton’s–secants
and the Chebisheff’s–secants methods and have used the escape time algorithm to
analyze the application of Julia set theory to these two combinations in some spe-
cial cases. We consider and solve the Newton’s–secants and Tchebicheff’s–secants
imaginary problems completely.

1. Introduction. In 1879 A. Cayley [1] demonstrated the Newton–Fourier imagi-
nary problem for F (z) = z2 − C. In 1977 J. H. Hubbard [3] solved this problem. Using

the transformation G(z) =
z + C

1

2

z − C
1

2

= u, G−1(u) = C
1

2

u + 1

u − 1
he proved [1], [3] that the

dynamical system

C : fN(z) = z −
F (z)

F ′(z)
(1.1)

and C : R(u) = u2 are equivalent: R(u) = G ◦ fN ◦ G−1(u) = u2.

In [5] we define the Newton’s–secants method for computing solutions of nonlinear
equation F (z) = 0: it tell us to consider the dynamical system, associated with F (z) :

C : fNs(z) = fN(z) −
F (fN(z))(fN (z) − z)

F (fN (z)) − F (z)
(1.2)

where fN (z) is the Newton transformation, associated with the function F (z) (1.1).
In [6] we define the Chebisheff’s secants method for computing solution of nonlinear

equations: it is to consider the dynamic system:

C : fChs(z) = fCh(z) −
F (fCh(z))(fCh(z) − z)

F (fCh(z)) − F (z)
,

where

fCh(z) = z −
F (z)

F ′(z)
−

F 2(z)F ′′(z)

2(F ′(z))3
(1.3)
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2. Main results. Consider the polynomial

F (z) = zn − C, n ∈ N(2.1)

and the transformations:

G(z) =
z − C

1

n

z + C
1

n

, G−1(u) = C
1

n
u + 1

1 − u
.

We can prove the following theorems.

Theorem 2.1.The dynamical system fN(z) (1.1) where F (z) is (2.1) and

RN (u) = G ◦ fN ◦ G−1(u) =
2nu(u + 1)n−1 − (u + 1)n + (1 − u)n

2n(u + 1)n−1 − (u + 1)n + (1 − u)n

are locally equivalent in sufficiently little circle around each of the n roots of the polyno-

mial F (z) = zn − C. Since C is generally a complex number the value C
1

n is fixed as

any of the n - different values of the n - roots of the polynomial (2.1). The fixed points

of Rn(u) are u = 1 and u = −i tg
kpi

n
, k = 1, 2, . . . , n − 1

Theorem 2.2.The dynamical system (1.3) where F (z) is (2.1) and

RCh(u) =
(1 − u2)n(4n − 2) + (u − 1)2n(1 − n) + (u + 1)2n−1

(

4n2u − 3n(u + 1) + u + 1
)

(1 − u2)n(4n − 2) + (u − 1)2n(1 − n) + (u + 1)2n−1
(

4n2 − 3n(u + 1) + u + 1
)

are locally equivalent in sufficiently little open circle around each of the n roots of the

polynomial (2.1). The fixed points of (2.1) are:

1, −i tg
kpi

n
,

e
i2pim

n
(n − 1)

1

n

(3n − 1)
1

n

− 1

e
i2pim

n
(n − 1)

1

n

(3n − 1)
1

n

+ 1

, k = 1, 2, . . . , n − 1, m = 0, 1, 2, . . . , n − 1.

We can prove two similar theorems about fNs(z) and fChs(z) in the case (2.1), but
the general formulas for RNs(u) and RCh(u) are too long and we will publish them later.
Here we will consider only some examples. Consider now the polynomial:

F (z) = (zn − C)l, l, n ∈ N(2.2)

In the well-known modifications of Newton’s and Chebisheff’s methods for solving the
equation F (z) = 0 the following dynamic systems are considered:

C : fNm(z) = z −
u(z)

u′(z)

and

C : fChm(z) = z −
u(z)

u′(z)
−

u2(z)u′′(z)

2u′(z)3

where u(z) =
F (z)

F ′(z)
. We can prove two similar theorems about fNm(z) and fChm(z) in

the case (2.2). We obtain that RNm(z) = RN (z), but the general formula for RChm(z)
is too long and we will publish it later. We will consider here only some examples.
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3. Examples and the application of Julia set theory.

1) n = 2:

a) Newton’s–secants method:

fNs(z) =
z3 + 3Cz

3z2 + C

The fixed points of fNs(z) are 0, C
1

2 and −C
1

2 . The first is repulsive: f ′

Ns
(0) = 3

and the other are attractive:f ′

Ns
(C

1

2 ) = f ′

Ns
(−C

1

2 ) = f ′′

Ns
(C

1

2 ) = f ′′

Ns
(−C

1

2 ) = 0, but

f ′′′

Ns
(C

1

2 ) = f ′′′

Ns
(−C

1

2 ) =
3

2C
. This is clear, because RNs(u) = u3. The Julia set for u3

is |u| = 1. This is the second case in the fractal geometry that the formula for Julia set
is the same and too simple (see [1], [2] and [3]).

It is clear too that the order of successive approximations is 3 [4], greater than the
order of Newton’s approximations which is 2 and the order of secants’ approximations
which is 1,61803... [4]. Let’s consider the problem about the computation’s efficiency
in this case [3]. Assume that for the computation of F (z), F ′(z) and F (fn(z)) are
necessary 3 computation’s units. Then the efficiency of the Newton’s–secants method
will be 3

1

3 ≈ 1, 442... that is between the efficiency of the secants methods (1,61803...)

and the sufficiently of the Newton’s method (2
1

2 ≈ 1, 414...). Assume that 4 computation

units are used then the efficiency of the Newton–secants method will be 3
1

4 that is more
than the efficiency of the chords method which is one.

b) Chebisheff’s–secants method:

RChs(u) =
u4(2 + u)

1 + 2u
.

The fixed points of RChs(u) are 0, 1 and −1. The first is attractive and in a little circle
of 0 RChs(u) and R(u) = u3 are equivalent. The order of successive approximations is 4,
this is greater than the Chebisheff’s approximations order which is 3 [4]. The point −1 is
parabolic and the point 1 is repulsive. The fixed point’s type is determined by the facts

that R′

Chs
(0) = R′′

Chs
(0) = R′′′

Chs
(0) = 0, R

(4)
Chs

(0) = 48, RChs(1) =
11

3
, R′

Chs
(−1) = 1.

On the plate 1 the Escape time algorithm [2] is used to analyze the trajectories
of RChs(u).

c) Chebisheff’s–modification method:

RChm(z) =
u4(u2 + 3)

3u2 + 1
2) n = 3 :

a) Newton’s method:

RN (u) =
2u2(u + 3)

3 + 3u + 3u2 − u3

On the plate 2 the escape time algorithm [2] is used to analyze the trajectories of RN (u).

b) Chebisheff’s method:

RCh(u) =
4u3(u3 + 9u2 + 15u + 15)

9 + 36u + 45u2 + 60u3 + 15u4 − 5u6
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Plate 1

Plate 2
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Plate 3

Plate 4
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c) Newton’s–secants method:

RNs(u) =
4u3(u4 + 18u3 + 60u2 + 54u + 27)

27 + 81u + 171u2 + 189u3 + 177u4 + 27u5 − 23u6 − 9u7

On the plates 3, 4 the Escape time algorithm [2] is used to analyze the trajectories
of fNs(z) in the case: F (z) = z3 − 1.
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