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Let (M, g) be an n-dimensional Riemannian manifold, Ek be an arbitrary k-
dimensional subspace of the tangent space Mp, e1, e2, . . . , ek be an arbitrary or-
thonormal basis in Ek and let S(Ek) be a linear symmetric operator of Mp defined
by S(Ek)(u) = S(e1, e2, . . . , ek)(u) = Σi<jR(ei, ej , R(ei, ej)u), i, j = 1, 2, . . . , k. We
say that (M, g) is k − S or k-Stanilov manifold if the eigenvalues of the curvature
operator S(Ek) are pointwise constants at any point p ∈ M . In the present note
we proved that a four-dimensional Riemannian manifold (M, g) is k −S manifold for
k = 2, 3 if and only if (M, g) is a space of constant sectional curvature or (M,g) is
locally isometric to a warped product of the form B ×f N where B is 1-dimensional
subspace of Mp and N is 3-dimensional space form of constant sectional curvature K

and warped smooth function on B is given by f (t) =
√

Kt2 + Ct + D where K, C, D

are constants such that C2 − 4KD 6= 0. Thus we fully characterize four-dimensional
k − S manifolds.

Let (M, g) be a four-dimensional Riemannian manifold with metric g, curvature tensor
R and let p be a point of M . The skew-symmetric curvature operator R(E2) of the
tangent space Mp to M at a point p ∈ M is a skew-symmetric linear mapping

R
(

E2
)

: Mp → Mp

defined by

R
(

E2
)

(u) = R (X, Y, u) ,

where E2 = E2(p; X, Y ) is an arbitrary two-dimensional tangent plane of Mp. It is
easy to see that this operator does not depend on the orthonormal oriented basis in
the plane E2. This curvature operator was defined from G. Stanilov which first state a
problem for the investigation of a four-dimensional Riemannian manifolds of pointwise
constant curvature eigenvalues of R(E2) and he proved in a joint work with R. Ivanova the
following assertion [1]: The curvature operator R(E2) has pointwise constant eigenvalues
at any point p of a four-dimensional Einstein Riemannian manifold (M, g) if and only if
(M, g) is a space of constant sectional curvature.

Further manifolds where the skew-symmetric curvature operator R(E2) has pointwise
constant eigenvalues were called from P.B. Gilkey as IP (Ivanov, Petrova) manifolds. We
believe the main reason is the following result:
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Theorem A [2].Let (M, g) be a four-dimensional Riemannian manifold such that
eigenvalues of the skew-symmetric curvature operator R(E2) are pointwise constants at
any point p of the manifold. Then (M, g) is locally (almost everywhere) isometric to one
of the following spaces:

a) real space form;

b) a warped product B ×f N where B is open interval on the real line, N is 3-
dimensional space form of constant sectional curvature K and f is a smooth function on
B given by f (x) =

√
Kx2 + Cx + D where K, C, D are constant such that C2−4KD 6= 0.

From [2] we will use the following:

Proposition 2.3.Let (M, g) be a four-dimensional Riemannian manifold such that
the eigenvalues of the skew-symmetric curvature operator R(E2) are pointwise constants
at any point p of the manifold. Then at any point p ∈ M there exist an orthonormal
basis e1, e2, e3, e4 in the tangent space Mp such that Rijjk = 0, Rijks = 0 and exactly
one of the following cases occurs:

i) K12 = K13 = K14 = K23 = K24 = K34,

ii) K12 = K13 = −K14 = −K23 = K24 = K34,

iii) K12 = K13 = K14 = −K23 = −K24 = −K34.

The classification of S. Ivanov and I. Petrova was extended by P. Gilkey, J. Leahy, U.
Semmelman and H. Sadofsky [3], [4], [5]. We summarize these results as follows:

Theorem B. Let (M, g) be a Riemannian manifold of dimension m ≥ 5 and m 6= 7
such that (M, g) is IP manifold. Then either (M, g) has constant sectional curvature or
(M, g) is locally isometric to a warped product of the form

(1) ds2 = dt2 + f(t)ds2

N on (t0, t1) × N,

where f(t) = 1

2
(Kt2 + At + B) > 0, and ds2

N has constant sectional curvature K.

In the present note we generalize IP-conjecture in Riemannian geometry using a
curvature operator S(Ek) defined from G. Stanilov in the following way:

Definition 1.Let (M, g) be an n-dimensional Riemannian manifold, Ek be an ar-
bitrary k-dimensional subspace of the tangent space Mp, e1, e2, . . . , ek be an arbitrary
orthonormal basis in Ek and let S(Ek) be the linear symmetric operator of the tangent
space Mp defined by

S
(

Ek
)

(u) = S (e1, e2, . . . , ek) (u) =

k
∑

i,j=1

i<j

R (ei, ej , R (ei, ej , u)) .

We say that (M, g) is k − S manifold if the eigenvalues of the curvature operator S(Ek)
are pointwise constants at any point p ∈ M .

It is easy to check that S(Ek) does not depend on the basis e1, e2, . . . , ek in Ek.
Evidently in the case dimM = 4 it is possible to exist only 2 − S and 3 − S manifolds.
Following theorems A and B we can prove that if (M, g) is 2− S (or IP) manifold, then
(M, g) is 3 − S manifold. Further we will prove that converse result is true.

Let e1, e2, e3, e4 be an orthonormal basis in the tangent space Mp at a point p ∈ M .
If x, y is orthonormal pair of vectors in the tangent space Mp, then the matrix of the
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curvature operator S(x, y) = (A) with respect to this basis has the entries:

(2)

a11 = −R2(x, y, e1, e2)
−R2(x, y, e1, e3) − R2(x, y, e1, e4)

a12 = −R(x, y, e1, e3).R(x, y, e2, e3) − R(x, y, e1, e4).R(x, y, e2, e4)

a13 = R(x, y, e1, e2).R(x, y, e2, e3) − R(x, y, e1, e4).R(x, y, e3, e4)

a14 = R(x, y, e1, e2).R(x, y, e2, e4) + R(x, y, e1, e3).R(x, y, e3, e4)

a22 = −R2(x, y, e1, e2) − R2(x, y, e2, e3) − R2(x, y, e2, e4)

a23 = −R(x, y, e1, e2).R(x, y, e1, e3) − R(x, y, e2, e4).R(x, y, e3, e4)

a24 = −R(x, y, e1, e2).R(x, y, e1, e4) + R(x, y, e2, e3).R(x, y, e3, e4)

a33 = −R2(x, y, e1, e3)
−R2(x, y, e2, e3) − R2(x, y, e3, e4)

a34 = −R(x, y, e1, e3).R(x, y, e1, e4) − R(x, y, e2, e3).R(x, y, e2, e4)

a44 = −R2(x, y, e1, e4)
−R2(x, y, e2, e4) − R2(x, y, e3, e4).

From our assumption (M, g) to be 3 − S manifold we have the relations

traceS(x, y, z) = traceS(x, y, u), traceS(x, u, z) = traceS(y, u, z),

where x, y, z, u is an arbitrary orthonormal quadruple in Mp. These equalities give us
the system

traceS (x, z) + traceS (y, z) = traceS (x, u) + trace (y, u) ,

traceS (x, u) + traceS (x, z) = traceS (y, u) + trace (y, z) ,

from which it follows

(3) traceS (x, y) = traceS (z, u) .

From here using (2) and putting x = e1, y = e2, z = e3, u = e4 we obtain

(4)
K2(x, y) + R2(y, x, x, z) + R2(y, x, x, u) + R2(x, y, y, z) + R2(x, y, y, u) =
= K2(z, u) + R2(x, u, u, z) + R2(y, z, z, u) + R2(y, u, u, z) + R2(x, z, z, u),

where K is the sectional curvature function on M. Changing in (4) x by ax + bz and z

by −bx+az, where a and b are arbitrary real numbers such that a2 + b2 = 1 and making
some similarly calculations we obtain the relation:

(5) a2A + b2B + C = 0,

where

(6)

A = 4K(x, y)R(x, y, y, z) + 4R(y, x, x, u)(R(y, x, z, u) + R(y, z, x, u))

+2(K(y, z)− K(y, x))R(x, y, y, z) + 2(K(u, z) + K(u, x))R(x, u, u, z),

B = 4K(z, y)R(z, y, y, x) + 4R(y, z, z, u)(R(y, z, x, u) + R(y, x, z, u))

+2(K(y, x) − K(y, z)).R(z, y, y, x) + 2(K(u, z) + K(u, x))R(x, u, u, z)

C = R(x, y, y, u)R(z, y, y, u)− R(y, x, x, u)R(y, z, z, x)

−R(z, x, x, u)R(x, z, z, u) + R(y, z, z, u)R(y, u, u, x).

Because of a2 = 1 − b2, then from (5) we get A = B = −C. Now using (6) and some
properties of the Riemannian curvature tensor R [7] we obtain the equation

(R(y, x, x, u) − R(y, z, z, u)).(R(y, x, z, u) + R(y, z, x, u)) = 0

and evidently at least one of the possibilities are satisfied:

(7) R(y, x, x, u) − R(y, z, z, u) = 0,
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(8) R(y, x, z, u) + R(y, z, x, u) = 0.

We can check that these relations are equivalents each other. Using first Bianchi
identity and (8) we get

(9) R(x, z, y, u) = 0.

This equality holds for any orthonormal quadruple of tangent vectors x, y, z, u in
the tangent space Mp, at any point p ∈ M . From the Schouten’s theorem [8] follows
that (M, g) is a conformally flat Riemannian manifold. Then for the curvature tensor R

it holds the representation [6]

2.R(x, y, z, u) = g(y, z)ρ(x, u)− ρ(x, z)g(y, u) − g(x, z)ρ(y, u) + ρ(y, z)g(x, u).

For the curvature operator < of the second exterior product ∧2(Mp) on M we obtain

2< (x ∧ y) = (ρ (x) ∧ y − ρ (y) ∧ x) − τ

6
where τ is the scalar curvature. From here it is easy to see that if e1, e2, e3, e4 are
eigenvectors of the Ricci operator ρ with the corresponding eigenvalues λ1, λ2, λ3, λ4, then
2-vectors e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 are eigenvectors of the curvature
operator < where ei ∧ ej has the corresponding eigenvalue aij = 1

2

(

λi + λj − τ
3

)

, i, j =
1, 2, 3, 4. Using this fact either (4) and (9), for all the curvature components we have
formulas

(10) K2

ij = K2

st

for all different i, j, s, k and Rijst = 0 – otherwise.

From (10) using that aij = Kij , we get the relation (λi + λj − τ
3
)2 = (λs + λt − τ

3
)2,

hence τ(λi + λj − λs − λt) = 0. From here it follows two cases: λi + λj − λs − λt = 0 or
τ = 0. In the first case we have the system

λ1 + λ2 = λ3 + λ4, λ1 + λ3 = λ2 + λ4, λ1 + λ4 = λ2 + λ3.

From this system it follows that λ1 = λ2 = λ3 = λ4 and it is easy to see that (M, g)
is a Riemannian manifold of constant sectional curvature.

In the second case when τ = 0 we have that the curvature tensor R belongs to the
projections R4 in the standard decomposition R = R1 ⊕ R2 ⊕ R3 ⊕ R4 of the curvature
tensor R in four-dimensional Riemannian geometry [6]. It is well-known that R ∈ R4 if
and only if at any point p ∈ M and for any tangent plane α ∈ Mp holds the equation

(11) σ (α) = −σ
(

α⊥
)

.

Having in mind (10) and (11) for the characteristic equation of the curvature operator
S(e1, e2, ae3 + be4) (with root c) we obtain

(

K2

12+a2K2

13+b2K2

23+c
)

.
(

K2

12+b2K2

13+a2K2

23+c
)

×

×
(

c2+
(

K2

13+K2

23

)

c+a2b2
(

K2

13−K2

23

))

=0.

From our assumption (M, g) to be 3−S manifold it follows that the eigenvalues of the
curvature S(e1, e2, ae3 + be4) are pointwise constants. Then using the last characteristic
equation we can easy prove that K2

12
= K2

13
. Analogously we obtain K2

12
= K2

23
and

hence

(12) K2

12
= K2

13
= K2

23
.

It is clear that from (11) and (12) we have one of the equalities in Proposition 2.3
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which means that (M, g) is 2 − S. Thus we prove our main result

Theorem C.Let (M, g) be a four-dimensional Riemannian manifold. Then (M, g)
is 3 − S manifold if and only if (M, g) is 2 − S manifold.
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