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Hristo Tsvetanov Aladjov, Krassimir Todorov Atanassov

A generalized net describing the process of learning of genetic algorithm is con-
structed. Some extensions of the concept of genetic algorithm are discussed.

Introduction. The means of the Generalized Net (GN, see, e.g. [1]) theory are
especially suitable for describing parallel algorithms that investigate several solutions
simultaneously. Being such algorithms, the Genetic Algorithms (GAs, see, e.g. [2]) do
not make an exception. Here we construct a GN describing the process of GA learning
and the results of the functioning of this process.

Short remarks on Generalized Nets (GNs). The concept of a Generalized Net

(GN) is described in details in [1], see also

www.daimi.aau.dk/PetriNets/bibl/aboutpnbibl.html

These nets are the essential extensions of the ordinary Petri nets. GNs are defined
in a way that is principly different from the ways of defining the other types of Petri
nets. When some of the GN-conponents of a given model are not necessary, they can be
omitted and the new nets are called reduced GNs. Here a reduced GN without temporal
components is used.

Formally, every transition (in the used form of a reduced GN) is described by a
five-tuple:

Z = 〈L′, L′′, r, 〉,

where:

(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and output
places, respectively); for the above transition these are

L′ = {l′
1
, l′

2
, . . . , l′m}

and

L′′ = {l′′
1
, l′′

2
, . . . , l′′n};

(b) r is the transition’s condition determining which tokens will pass (or transfer)
from the transition’s inputs to its outputs; it has the form of an Index Matrix (IM;
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see [1]):

r =

l′′
1

. . . l′′j . . . l′′n
l′
1

... ri,j

l′i (ri,j − predicate )
... (1 ≤ i ≤ m, 1 ≤ j ≤ n)

l′m

;

ri,j is the predicate that corresponds to the i-th input and j-th output places. When its
truth value is “true”, a token from the i-th input place can be transferred to the j-th
output place; otherwise, this is not possible;

(c) is an object having a form similar to a Boolean expression. It may contain
as variables the symbols that serve as labels for transition’s input places, and is an
expression built up from variables and the Boolean connectives ∧ and ∨, with semantics
defined as follows:

∧(li1 , li2 , . . . , liu
) − every place li1 , li2 , . . . , liu

must contain at least one token,
∨(li1 , li2 , . . . , liu

) − there must be at least one token in all places li1 , li2 , . . . , liu
,

where {li1 , li2 , . . . , liu
} ⊂ L′.

When the value of a type (calculated as a Boolean expression) is “true”, the transition
can become active, otherwise it cannot.

The object

E = 〈A, πL, K, X, Φ〉

is called a (reduced) GN, if

(a) A is a set of transitions;

(b) πL is a function giving the priorities of the places, i.e., πL : L → N , where L =
pr1A∪pr2A, and priX is the i-th projection of the n-dimensional set, where n ∈ N , n ≥ 1
and 1 ≤ k ≤ n (obviously, L is the set of all GN-places), where N is the set of the natural
numbers;

(c) K is the set of the GN’s tokens;

(d) X is the set of all initial characteristics the tokens can receive when they enter
the net;

(e) Φ is a characteristic function that assigns new characteristics to every token when
it makes the transfer from an input to an output place of a given transition.

A GN-model for GA-learning. The GN-model of a genetic algorithm is shown on
Fig.1. It consists of three contours. Tokens from type α describing individuals (solutions)
move in the first of them (the l−contour). A single β−token, for every genetic algorithm,
describing the algorithm itself, moves in the second one (the m−contour). A γ−token for
each β−tokens loops in the third one (the n−contour). The γ−token controls parameters
and estimates the performance of the genetic algorithm represented by the β−token.

Initially, α−tokens representing individuals in terms of genetic algorithms theory enter
l1. They have the following initial characteristic of:

xα
0

= “〈I, C, f〉”,

where

243



I ∈ N is the identifier of the individual;
C is the chromosome of the individual;
f ∈ R is the individual fitness, where R is the set of the real numbers.

Together with the α−tokens, a single β− token enters in m1. It has the parameters
and functions of the genetic algorithm as a characteristic.

xβ
0

= “〈Task, N, O, F, S, R〉”,

where
Task ∈ {“estimate”, “select”, “process”, “reinsert”};
N ∈ N is the number of the individuals being controlled by the algorithm;

O = {〈Op, p〉|Op ∈ UOp, p ∈ [0, 1]}

is the set of operations over the individuals and their probabilities and UOp is the
set of all operations. Such operations are: one, two, ..., n−point crossover; and one,
two,... n− point mutation;
FF : UC → R is the fitness function. Where UC is the set of all chromosomes;
S : UC → {“survive”, “die”, “mutate”, “crossover”} is the selection function that deter-

mines what will happen with the individual;
R : UC → {“false”, “true”} is the reinsertion function that determines how the offspring

insertes in the current population.
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For each β−token one γ token enters the net. This token describes the process
that controls the execution of the genetic algorithm and adjusts its parameters and
functions. In the real genetic algorithms if this process is present, the algorithm itself
usually implements it. Therefore, the γ− token characteristic has the following form:

xγ
i = “〈T, M, E〉”,

where
T is an estimation of the total efficiency of the algorithm;
M is the modification function that changes functions F , S, R, operations and their
rates;
E is the end-condition function that determines whether the algorithm terminates its
exe- cution or not.

All α−tokens gather in l2 where the value of the fitness function for the individual is
updated, i.e. field f from their characteristic:

pr3(x
α
i ) = pr4(x

β
cu)(pr2(x

α
i ))

is updated.
If the selection function requires total fitness (fitness of all members of the population)

then all α−tokens must receive their new value of f . Otherwise, no awaiting is needed
and individuals can be selected for mutation, survival, crossover or death. These four
states are represented by places l5, l6, l7 and l8, respectively. The probability for a given
action is determined by the probability of the operation and the fitness value of the
individual.

For each step of the algorithm β− and γ−tokens loop in m2 and n2, respectively.
Transition Z1 has the following formal definition:

Z1 = 〈{l1, l2, l17, m1, m2, n1, n2}, {l2, l3, l4, l5, l6, m2, m3, n2, n3}, r1,

∧(∨(l1, l2, l17),∨(m1, m2),∨(n1, n2))〉,

where

r1 =

l2 l3 l4 l5 l6 m2 m3 n2 n3

l1 W1 W2 W3 W4 W5 false false false false
l2 W1 W2 W3 W4 W5 false false false false
l17 W1 W2 W3 W4 W5 false false false false
m1 false false false false false W6 ¬W6 false false
m2 false false false false false W6 ¬W6 false false
n1 false false false false false false false W7 ¬W7

n2 false false false false false false false W7 ¬W7

,

and
W1 = “pr4(x

β
cu) = ′estimate′ ”

W2 = “(pr4(x
β
cu) = ′select′)” & “(pr4(x

β
cu)(pr2(x

α
i )) = ′mutate′)”

W3 = “(pr4(x
β
cu) = ′select′)” & “(pr4(x

β
cu)(pr2(x

α
i )) = ′survive′)”

W4 = “(pr4(x
β
cu) = ′select′)” & “(pr4(x

β
cu)(pr2(x

α
i )) = ′crossover′)”
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W5 = “(pr4(x
β
cu) = ′select′)” & “(pr4(x

β
cu)(pr2(x

α
i )) = ′die′)”

W6 = “pr4(x
β
cu) 6= ∅”

W7 = “pr4(x
β
cu) 6= ∅”.

The α−tokens chosen for mutation transfer from l3 to l7 and obtain as a characteristic
the new chromosome description

xα
i = “〈I, C ′, f〉”,

where C ′ can be the result of one, two or multi-point mutation or, in general, any
operation with argument beeng a single individual chromosome. This transformation is
represented by transition

Z2 = 〈{l3}, {l7}, r2,∧(l3)〉,

where

r2 =
l7

l3 W8

,

where
W8 = “pr4(x

β
cu) = ′process′ ”.

The individuals that can “survive” without no changes of their chromosomes are
represented by α−tokens in place l4. According to the value of the reinsertion function,
they will either “survive” and transfer to l17 or will “die” and leave the net via l18.

The individuals chosen for crossover operation are represented by a set of α−tokens
in place l5. All of them transfer into l8 and obtain no new characteristic. After that
the corresponding tokens of chosen couples of individuals unite in l10 and the rest of the
tokens transfer in l11. Tokens from l11 return back to l9 in order to participate in the
choice of the next couples.

In the case of a one point crossover operation united tokens from place l10 will split
into two “parent” individuals, represented by α− tokens in l12 and l13, and two “child”
individuals represented by tokens in l14 and l15, respectively. If the crossover operation
has more than one crossover point then a token from l10 will transfer in l16 and loop
there until the hole the offspring is generated. After each step of that loop new “child”
individual are reproduced in l14 and l15. In the final step the token from l16 splits into
two tokens in places l12 and l13, respectively.

Z3 = 〈{l5, l11}, {l8, l9}, r3,∨(l5, l11)〉,

where

r3 =
l8 l9

l5 W8 false
l11 false true

,

where W8 is defined above.

Z4 = 〈{l8, l9}, {l10, l11}, r4,∨(l8, l9)〉,

where

r4 =
l10 l11

l8 W8&W9 W8&¬W9

l9 W8&W9 W8&¬W9

,
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where
W9 = “the individuals are in suitable pairs”.

Z5 = 〈{l10, l16}, {l12, l13, l14, l15, l16}, r5,∨(l10, l16)〉,

where

r5 =
l12 l13 l14 l15 l16

l10 W10 W10 W10 W10 ¬W10

l16 W11 W11 true true ¬W11

where
W10 = “the operation is one point crossover”,
W11 = “2n children are generated”,
where n is the number of crossover points.

Now all α−tokens that represent individuals including the new offsprings are the input
places of transition Z6. Reinsertion function will determine which of them will remain in
the population and which of them not. Tokens that represent survived individuals enter
l17; the rest of the tokens leave the net via place l18.

Z6 = 〈{l4, l7, l12, l13, l14, l15}, {l17, l18}, r6,∨(l4, l7, l12, l13, l14, l15)〉,

where

r6 =
l17 l18

li W12 ¬W12

where (i = 4, 7, 12, 13, 14, 15)
W12 = “(pr4(x

β
cu) = ′reinsert′)” & “(pr6(x

β
cu)(pr2(x

α
i )))”.

Conclusion. In the model described above no restrictions of intrinsic parallelism of
genetic algorithms are imposed. So the algorithms can be studied and compared with-
out the limitations forced by their implementations on sequential architectures. Many
extensions of the classical concept of genetic algorithms, such as the Global GA [3], the
Migration GA, the Diffusion GA, the Multi objective GA and Hierarchical GA [2] can
be easily represented in the model.

The definition of the model provokes some additional possibilities, such as operations
with more then two arguments, modification of selection, reinsertion or fitness functions
during the execution of the algorithm, and other. The constructed model is a new
illustration of the idea discussed in [4] that all areas of the artificial intelligence can
be described by the means of the GNs. This will help the future research of complex
processes, separate parts of which are objects of studying of different areas of the artificial
intelligence. The apparatus of the GNs give a possibility to unite the models of the
separate processes to a global one.
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