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The Theory of Essential Variables is an important field of Theoretical Computer
Science, that have been intensively developed during the last years. The concept of
essential variables and separable sets of variables has been also introduced for terms
in Universal algebra by K. Denecke and Sl. Shtrakov [2]. In this paper we consider
another classification of Boolean functions variables and we study their behavior in
accordance with the work of Breitbart [3], Lupanov [4] and Chimev [1]. Analogous
theorems are proved.

1. Introduction. For the Boolean functions we will consider the following three
decompositions [5]:

f = xf1 ⊕ f2 positive Davio (positive polarity)
f = x(f1 ⊕ f2) ⊕ f2 = xf1 ⊕ xf2 Shannon decomposition
f = xf1 ⊕ f1 ⊕ f2 = xf1 ⊕ f2 negative Davio (negative polarity)

(1)

Positive and negative Davio are also known as Reed-Muller expansions.
Many properties of variables and sets of variables, such as essentiality and separability,

are introduced using Shannon decomposition [1].
The function f(x1, . . . , xn) can be decomposed with respect to (w.r.t.) variable xi

using Shannon expansion such as:

f(x1, . . . , xn) = xif1 ⊕ xif2.(2)

Here f1 := f(xi = 0) and f2 := f(xi = 1) are functions of n − 1 variables (the
functions which are obtained by substituting xi by two possible constants) and usually
they are called subfunctions of f(x1, . . . , xn).

As other types of subfunctions will also be introduced, let us call this kind of subfunc-
tions sh-subfunctions (Shannon’s subfunctions). Shannon’s subfunctions will be denoted
by fsh(xi =const).

Let us fix the positive polarity of the Reed-Muller decomposition and consider the
decomposition formula xf1 ⊕ f2. The definitions and results that we will obtain can be
easily transformed to the negative Davio.

The function f(x1, . . . , xn) can be decomposed w.r.t. variable xi as follows:

f(x1, . . . , xn) = xif1 ⊕ f2.(3)

Here f1 and f2 are functions of n− 1 variables and we will call them rm-subfunctions of
f(x1, . . . , xn), or Reed-Muller’s subfunctions and will denote them by f rm(xi =const).

258



Let

frm(xi = ci) =

{

f2, if ci = 0
f1, if ci = 1

.(4)

If g = frm(xi1 = const, . . . , xik
= const), where M = {xi1 , . . . , xik

} then we will use
the denotation g ≺M

rm f .

Definition 1. Let f be a Boolean function and its Shannon decomposition w.r.t. vari-

able xi be f = xif1 ⊕ xif2. The variable xi is called fictive (sh-fictive) for f(x1, . . . , xn)
iff f1 = f2 and essential (sh-essential) iff f1 6= f2.

The set of all essential variables for f(x1, . . . , xn), in the case of Shannon decompo-
sition, will be denoted by shEss(f). The set of all functions that depend sh-essentially
exactly on n variables will be denoted by F sh(n).

It is clear that if we get a function and all its variables are sh-fictive then this function
is constant.

In the case of Reed-Muller decomposition by analogy with the definition of sh-fictive
variables we can define rm-fictive variables.

Definition 2. Let f be a Boolean function and its Reed-Muller decomposition w.r.t.

variable xi is determined by the equation f = xif1⊕f2. The variable xi is called rm-fictive
(quasi fictive) iff f1 = f2. The variable xi is rm-essential for f(x1, . . . , xn) iff f1 6= f2.

If a function has “many” quasi-fictive variables we may expect that the function is
“more” simple. Note that rm-fictivity depends on the polarity of the decomposition
formulae, i.e. a variable can be rm-fictive when using positive polarity, but the same
variable is rm-essential w.r.t. the alternative polarity.

For our next considerations we fix and use only positive polarity.

The set of all rm-essential variables for f(x1, . . . , xn), will be denoted by rmEss(f).
The set of all functions which depend rm-essentially exactly on n variables will be denoted
by F rm(n).

Example 1. Let f = x1x2 +x1 +x2 +1. The Reed-Muller decomposition of f w.r.t.
x1 is: f = x1(x2) + x2. Hence x1 6∈ rmEss(f). Analogously, Reed-Muller decomposition
of f w.r.t. x2 is f = x2(x1) + x1, i.e. x2 6∈ rmEss(f). So, rmEss(f) = ∅, but f is not
constant. �

By analogy with the case of Shannon decomposition [1] we define rm-strongly essential
variables and rm-separable sets as follows:

Definition 3. If f ∈ F rm(n), n ≥ 1 and ∅ 6= M ⊆ rmEss(f) then the variable

x ∈ M is called rm-strongly essential for f w.r.t. M, if there exists value c, such that

M \ {x} ⊆ rmEss(f rm(x = c)).

If f ∈ F rm(n), n ≥ 1 and ∅ 6= M ⊆ rmEss(f) then the set of all rm-strongly essential
variables for f w.r.t. M will be denoted by rmEss∗(f, M).

Definition 4. If f ∈ F rm(n), n ≥ 1 and ∅ 6= M1 ⊆ rmEss(f), M2 ⊆ rmEss(f),
M1 ∩ M2 = ∅, then we say that the set M2 is rm-separable for f w.r.t. M1, if for the

variables from M1 there exist values such that when replacing them by Boolean constants,

the new rm-subfunction g obtained from f satisfies M2 ⊆ rmEss(g). This will be denoted

by M2 ∈ rmSep(f, M1).
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Definition 5. For the Boolean function f we say that the set M (M ⊆ rmEss(f))
is rm-separable for f, if M is rm-separable for f w.r.t. rmEss(f) \ M.

2. Essentiality and Separability in Reed-Muller decompositions. Example
1 allows us to view rm-fictive variables in their difference with sh-fictive variables.

The essential variable is dual to the fictive one. Hence there are differences between
rm-essential and sh-essential variables.

In this section we will show that the most important properties of the traditional
(Shannon case) notions – essentiality, separability, etc. are preserved when going to
Reed-Muller decomposition scheme.

It is obvious that:

frm(xi = 1) = f sh(xi = 0) + f sh(xi = 1) and
frm(xi = 0) = f sh(xi = 0).

(5)

Lemma 2.1. The variable xi is rm-fictive iff f sh(xi = 1) = 0 for the Boolean

function f(x1, . . . , xn).

To prove next theorems we need the following lemmas.

Lemma 2.2. Let xi and xj be two variables of Boolean function f(x1, . . . , xn). If

g = frm(xi = αi) and h = f rm(xj = βj) for αi, βj ∈ {0, 1} then grm(xj = βj) =
hrm(xi = αi).

Proof. (The proof is easy to be done by using (5) and considering three non-trivial
cases: αi = βj = 0, αi = 0, βj = 1, αi = βj = 1.) �

Lemma 2.3. If xi is rm-fictive for the Boolean function f(x1, . . . , xn), then xi is

rm-fictive for each rm-subfunction of f.

Proof. By Lemma 2.1. if xi is rm-fictive for the Boolean function f(x1, . . . , xn) it
follows f rm(xi = 0) = f rm(xi = 1) = f sh(xi = 0).

Let g = f rm(xk = 0) for k 6= i, i.e. g = f sh(xk = 0) and h = f rm(xk = 1) =
fsh(xk = 0) + f sh(xk = 1).

Now we will prove that xi is rm-fictive for g and h. From (5) it follows that grm(xi =
0) = gsh(xi = 0) and grm(xi = 1) = gsh(xi = 0) + gsh(xi = 1).

By Lemma 2.1. we have gsh(xi = 1) = 0. Consequently grm(xi = 0) = grm(xi = 1),
i.e. xi is rm-fictive for g (g ≺rm f).

For h we have h = f rm(xk = 1) = f sh(xk = 0) + f sh(xk = 1) = g + f sh(xk = 1).

Let us set t = f sh(xk = 1). In a similar way as above we obtain that xi is rm-fictive
for t and by Lemma 2.1. follows that xi is rm-fictive for h. �

Lemma 2.4. If f ∈ F rm(n), g ≺rm f and M ∈ rmSep(g) then M ∈ rmSep(f).

In the Shannon case, many researchers have paid efforts to obtain lower bounds of
the number of strongly essential variables. O.B. Lupanov [4] in 1962 proved that each
Boolean function f with |shEss(f)| ≥ 2 has at least one sh-strongly essential variable.
N.A. Solovi’ev in 1963 gave another proof of this result. A. Salomaa in 1963 generalized
proof for arbitrary discrete function. J. Breitbart [3] in 1967 proved that there are at least
two strongly essential variables for each Boolean function. K. Chimev [1] generalized this
result for arbitrary discrete function.
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Theorem 2.5. If f ∈ F rm(n), n ≥ 2 and M1 ∈ rmSep(f, M2), M2 6= ∅, then there

exists at least one variable from M2 which is rm-strongly essential for f with respect to

M1 ∪ M2.

Proof. The proof will be done by induction on the cardinality of the set M2. For
|M2| = 1, the proof of the theorem is obvious. Let us assume that the theorem is true
for 1 ≤ |M2| ≤ l. We will prove the theorem for the case |M2| = l + 1.

Let |M2| = l + 1 ≥ 2. Let us assume that M1 = {x1, . . . , xm} and
M2 = {xm+1, . . . , xm+l+1}, where m + l + 1 ≤ n.

Let cm+1, . . . , cm+l+1 be such values of xm+1, . . . , xm+l+1, that
{x1, . . . , xm} ⊂ rmEss(f1), where f1 = frm(xm+1 = cm+1, . . . , xm+l+1 = cm+l+1).

If f2 = frm(xm+1 = cm+1), then {x1, . . . , xm} ⊂ rmEss(f2), which follows from
Lemma 2.3., because of {x1, . . . , xm} ⊂ rmEss(f1) and f1 ≺rm f2.

If {xm+2, . . . , xm+l+1} ⊂ rmEss(f2), then xm+1 will be rm-strongly essential for f
with respect to M1 ∪ M2 and the theorem is proved in this case.

Let us consider the case when there exist variables xj , j ∈ {m + 2, . . . , m + l + 1},
such that xj /∈ rmEss(f2), i.e. for each value αj of xj f2 = xjf21 + f22 = xjf21

Let us assume that there exist variables xk, 1 ≤ k ≤ m such that xk ∈ rmEss(f2)
and xk /∈ rmEss(f2(xj = αj)). Then from (3) and the definition of rm-fictive variables
follows that f rm

2 (xj = αj) = xkfrm
2 (xj = αj , xk = αk), and f2 = xjf21 + f22 = xjf21 =

xjf
rm
2 (xj = αj) = xjxkfrm

2 (xj = αj , xk = αk) = = xkxjf
rm
2 (xj = αj , xk = αk) =

xkfrm
2 (xk = αk), which is a contradiction to the assumption that xk ∈ rmEss(f2).

Consequently it follows that M1 ⊂ rmEss(f2(xj = αj)). Let now c′j be such value of
xj that xm+1 ∈ rmEss(f3), where f3 = frm(xj = c′j). From M1 ⊂ rmEss(f2) and
xj 6∈ rmEss(f2) it follows M1 ⊂ rmEss(f2(xj = c′j)). But f2(xj = c′j) ≺rm f3, from
which follows that

M1 ⊂ rmEss(f3).(6)

Let M3 = M2\rmEss(f3). As xj ∈ M2 and xj - rm-fictive for f3 implies that M3 6= ∅.
There follows that 1 ≤ |R3| ≤ l.

From (6) follows that there exist such values for the variables from M3 that after
replacing them, the variables from M1 remain rm-essential. For example it is enough to
put, instead of xj the constant c′j , and for all of the other variables in M3 (if there exist
any) - arbitrary values. Then we receive the function f3. This means that M1∪(M2\M3) ∈
rmSep(f, M3), and it brings us to step 2 in our proof - the inductive assumption. �

Corollary 2.6. If f ∈ F rm(n), n ≥ 2 and M ∈ rmSep(f), where M ⊂ rmEss(f)
(M 6= rmEss(f)), then there exists at least one variable xt ∈ rmEss(f) \ M such that

M ∪ {xt} ∈ rmSep(f).

Proof. Let rmEss(f) = {x1, . . . , xn} and M = {x1, . . . , xm}, m ≤ n.

Let us at suppose first that n = m + 1. Then M ∪ {xn} = rmEss(f) ∈ rmSep(f).

Second, let m + 1 < n. Consider the set M1 = {xm+1, . . . , xn}. From Theorem 2.5.
there exists xj1 ∈ M1 such that M ∪ M2 ∈ rmSep(f1), where M2 = M1 \ {xj1} and
f1 = frm(xj1 = αj1) for some αj1 ∈ {0, 1}.

If we apply Theorem 2.5. for M, M2 and f1 we will obtain set M3 and rm-subfunction
f2 of f1 such that M ∪ M3 ∈ rmSep(f2) and M3 = M2 \ {xj2}.

Clearly this process can be continued until we obtain set Mn−m and rm-subfunction
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fn−m−1 of fn−m−2 such that

Mn−m = {xjn−m−1
} and M ∪ {xjn−m−1

} ∈ rmSep(fn−m−1).

Lemma 2.4. implies M ∪ {xjn−m−1
} ∈ rmSep(f). �

Corollary 2.7. If f ∈ F rm(n), n ≥ 2 and g is rm-subfunction of f with respect to

M (M 6= ∅), then there exist rm-functions fi, (i = 1, . . . , m where m = |M |) of f that

g ≺rm f1 ≺rm f2 ≺rm . . . ≺rm fm = f(7)

and for each i = 1, . . . , m, the function fi depends rm-essentially on exactly i variables

which belong to M.
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