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The aim of the study is to present and investigate a new stochastic process for mod-
eling population dynamics, namely Sevastyanov’s age-dependent branching process
with emigration. Such model appears naturally in applications to cell populations
where with positive probability the cells may die before their life-cycle is completed.

1. Introduction. Branching processes with emigration can be considered as
one of the possible ways of specifying the general model of controlled (ϕ- branching)
processes (see [10], [11], [14]). For the first time the Bienaymé-Galton-Watson processes
with emigration of one particle at every generation (provided there exists at least one
particle) was considered by Vatutin in [12]. He studied the critical case, i. e. when
the mean offspring of each particle is one. When all moments of the offspring exist
the asymptotics of the probability of nonextinction was obtained. He also proved that
conditioned on degeneracy the normalized process has the exponential distribution as a
limit law.

More general model when a random number of particles is removed from the
population (and all these numbers are independent r. v. with given p. g. f. h(s)) was
considered in [1] and [13] where Vatutin’s results about the probability of nonextinction
in that more general setting were expanded and again the limit law turned out to be an
exponential distribution.

In [4], [7], [8] Pakes has considered continuous-time Markov branching processes
with emigration which occurs at the jump moments of a Poisson process, i. e. if em-
igration occurs at time t, then min(Yt, ηt) particles are removed from the process. In
[4] Pakes has estimated the rate of convergence of Q(i) = lim

t→∞
P{Yt = 0|Y0 = i} to 0

as i → ∞ and E log(1 + ηt) < ∞. The asymptotics of the expectation of Yt and of
extinction moment as Y0 = i → ∞ for subcritical and critical continuous-time Markov
branching processes with emigration were studied in [7]. In the same paper it was shown
that the limiting stochastic process corresponding to the conditional distributions of Yt,
given that Yt+u > 0, u → ∞, is positively recurrent in the subcritical case and transient
in the critical one.

Analogous results for Markov branching processes with emigration rate (the same
as the rate of jumps upwards caused by the splitting of particles) proportional to the
number of particles that are alive have been obtained in [2], [3], [5], [6].

*This work was partially supported by grant MM-704/97 of the National Foundation for Scientific
Investigations
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Our object is to describe a cell population model, general enough to give a good
description of biological reality and yet simple enough to cover a large class of cell pop-
ulations which admit cell degeneracy. For this Sevastyanov age-dependent branching
model (see [9]) is considered where additionally each particle is subject to age-dependent
emigration. It is investigated the subcritical case when all individual characteristics of
the process are finite and the process itself is regular.

2. Model, moments and extinction.

2.1. Definition of the model. Sevastyanov age-dependent branching process
{Z(t)}t≥0 with pure emigration is defined as follows. Let h(t; s) =

∑∞

k=0 hk(t)sk be
the offspring p.g.f., where hk(t) is the probability each particle to have k descendants
at age t. The lifetime L of each particle is defined by two independent r.v. X and
Y , where L = min(X, Y ). If L = X and X = u then the particle generates random
offspring according to the p.g.f. h(u; s) and if L = Y then the particle emigrates from
the population or disappears without producing any offspring. It is assumed that the
d.f. F1(t) = P(X ≤ t) and F2(t) = P(Y ≤ t) are non-lattice.

Denote the p.g.f. Φ(t; s) = EsZ(t) =

∞
∑

k=0

Pk(t)sk, Pk(t) = P(Z(t) = k), |s| ≤ 1,

with Φ(0; s) = s and P(L ≤ t) = G(t), where Ḡ(t) = P(L > T ) = F̄1(t)F̄2(t), F̄1(t) =
1 − F1(t), F̄2(t) = 1 − F2(t).

Lemma 2.1. The p.g.f. Φ(t; s) of the process Z(t) is the unique solution of the
equation

Φ(t; s) = p

∫ t

0

h(u; Φ(t − u; s))dA(u) + s(1 − G(t)) + (1 − p)B(t),(2.1)

where

p = P(X ≤ Y ) =

∫ ∞

0

F̄2(u)dF1(u),

A(t) = P(X ≤ t|X ≤ Y ) =
1

p

∫ t

0

F̄2(u)dF1(u),(2.2)

B(t) = P(Y ≤ t|Y ≤ X) =
1

(1 − p)

∫ t

0

F̄1(u)dF2(u).

Proof. The integral equation (2.1) follows by the law of the total probability
considering two cases - when the life-cycle of the first particle L ≤ t and L ≥ t, where
t ≥ 0 is fixed.

(i) If L ≤ t then we have two cases:
(i.1) If Y = L ≤ t therefore Z(t) = 0 with probability

P(Y = L ≤ t) = P(Y ≤ t; Y ≤ X) =

∫ t

0

F̄1(u)dF2(u) = (1 − p)B(t);(2.3)

(i.2) If X = L ≤ t then the process Z(t) at instant t is equivalent to the classical
Sevastyanov’s branching process with individual characteristics (h(t; s), A(t)).

Since

P(X = L ≤ t) = P(X ≤ t; X ≤ Y ) =

∫ t

0

F̄2(u)dF1(u) = pA(t),(2.4)
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then we obtain the first term in (2.1).
(ii) If L ≥ t, then Z(t) = 1 with probability 1. On the other hand,

P(L ≥ t) = 1 − G(t) = F̄1(t)F̄2(t) = 1 − pA(t) − (1 − p)B(t).(2.5)

Using (2.2)-(2.5) we obtain

Φ(t; s) = p

∫ t

0

h(u; Φ(t − u; s))dP(X ≤ u|X ≤ Y )

+ sF̄1(t)F̄2(t) + (1 − p)P(Y ≤ t|Y ≤ X).(2.6)

It is clear that the conditional probabilities in (2.6) satisfy

P(Y ≤ t|Y ≤ X) =
P(Y ≤ t; Y ≤ X)

P(Y ≤ X)
= B(t),

P(X ≤ t|X ≤ Y ) =
P(X ≤ t; X ≤ Y )

P(X ≤ Y )
= A(t).(2.7)

Finally, from (2.6) and (2.7) we obtain equation (2.1) of the lemma.

2.2. Moments and extinction. Denote the moments as follows

M1(t) =
∂Φ(t; s)

∂s

∣

∣

∣

∣

s=1

= EZ(t), M2(t) =
∂2Φ(t; s)

∂s2

∣

∣

∣

∣

s=1

= EZ(t)[Z(t) − 1],

m(u) =
∂h(u; s)

∂s

∣

∣

∣

∣

s=1

, b(u) =
∂2h(u; s)

∂s2

∣

∣

∣

∣

s=1

,

m =

∫ ∞

0

m(u)dA(u), b =

∫ ∞

0

b(u)dA(u).

After differentiating (2.1) and setting s = 1 one obtains the following equations:

M1(t) = F̄1(t)F̄2(t) + p

∫ t

0

m(u)M1(t − u)dA(u),(2.8)

M2(t) = p

∫ t

0

m(u)M2(t − u)dA(u) + p

∫ t

0

b(u)M2
1 (t − u)dA(u).(2.9)

In the following we will establish asymptotic properties of the moments and will
prove limit theorems for the processes using integral equations (2.8) and (2.9).

Define real number α (which is so-called Malthusian parameter) as the root of the
equation

p

∫ ∞

0

e−αum(u)dA(u) = 1.(2.10)

If mp > 1, then α > 0 exists and it is unique. If m̃ = mp = 1 then α = 0. If m̃ < 1,
then the equation (2.10) may not have a root. But if it exists, then it is negative. In the
following considerations it will be supposed that there exists a unique root of equation
(2.10).

Let q = lim
t→∞

P0(t), where P0(t) = P(Z(t) = 0). Then from equation (2.1) with
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s = 0 as t → ∞ we obtain that q is the smallest root of the equation h̃(u) = s, where

h̃(u) = p

∫ ∞

0

h(u; s)dA(u) + (1 − p). Then the criticality parameter of the process Z(t)

with emigration component turned out to be m̃ = mp = p

∫ ∞

0

m(t)dA(t).

3. Limit theorems (m̃ = mp < 1).

Theorem 3.1. Let m̃ < 1,

∫ ∞

0

te−αtdG(t) < ∞,

∫ ∞

0

te−αtm(t)dA(t) < ∞, and

there exists the Malthusian parameter α < 0, defined by (2.10), G(t) and A(t) are defined
by (2.2). Then

lim
t→∞

M1(t)e
−αt = c1.(3.1)

If in addition

∫ ∞

0

b(t)e−αtdA(t) < ∞ and

∫ ∞

0

tb(t)e−αtdA(t) < ∞, then

lim
t→∞

M2(t)e
−αt = c2,(3.2)

where c1 and c2 are positive constants.

Proof. From equation (2.8) by substitution M̃1(t) = M1(t)e
−αt, it follows

M̃1(t) = F̄1(t)F̄2(t)e
−αt +

∫ t

0

M̃1(t − u)dÃ(u),(3.3)

where

Ã(u) = p

∫ u

0

e−αxm(x)dA(x) (Ã(+∞) = 1).(3.4)

To apply basic renewal theorem (see [9], Theorem 8.7.6, p.271) we have to prove,
that F̄1(t)F̄2(t)e

−αt ∈ L1(0,∞) and F̄1(t)F̄2(t)e
−αt ↓ 0, as t → ∞. We will show

that Ḡ(t)e−αt can be presented as sum of two non-increasing functions belonging to

L1(0,∞). First of all, as α < 0, then e−αt(1 − G(t)) ≤

∫ ∞

t

e−αudG(u), and that is why

e−αt(1 − G(t)) → 0, as t → ∞.
Moreover, from relations

∫ ∞

0

dt

∫ ∞

t

e−αudG(u) = t

∫ ∞

0

e−αudG(u)

∣

∣

∣

∣

∞

0

+

∫ ∞

0

te−αtdG(t)

=

∫ ∞

0

te−αtdG(t) < ∞,

we obtain that

∫ ∞

t

e−αtdG(t) ∈ L1(0,∞).

On the other hand, integrating by parts gives

∫ T

t
e−αudG(u) = −

∫ T

t

e−αud(1 − G(u))

= −e−αu(1 − G(u))
∣

∣

T

t
− α

∫ T

t

e−αu(1 − G(u))du.
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Let T → ∞, then

∫ ∞

t

e−αudG(u) = e−αt(1 − G(t)) − α

∫ ∞

t

e−αu(1 − G(u))du.

In the last equation the left hand side and the second term on the righthand side
belong to L1(0,∞) and it is clear that e−αt(1 − G(t)) ∈ L1(0,∞), as the sum of two
non-increasing functions of L1(0,∞).

Then, it is easy to obtain from equation (3.3) that

lim
t→∞

M̃1(t) =

∫ ∞

0

e−αtF̄1(t)F̄2(t)dt

p

∫ ∞

0

um(u)e−αudA(u)

= c1,(3.5)

which proves (3.1).
Now, to establish (3.2) let us make the substitutions M̃1(t) = M1(t)e

−αt , M̃2(t) =
M2(t)e

−αt in (2.9), where α < 0 is defined by (2.10). We obtain

M̃2(t) =

∫ t

0

M̃2(t − u)dÃ(u) + eαt

∫ t

0

M̃2
1 (t − u)b(u)e−2αudA(u),(3.6)

where Ã(u) is defined by (3.4).
In order to apply Theorem 8.7.9 (see [9], p. 272) we need to prove that the

second term on the righthand side in (3.6) belongs to L1(0,∞). Using (3.5) it is
clear that it is non-negative and bounded from above function by some constant mul-

tiplied by eαt

∫ t

0

e−2αudAb(u), where Ab(u) =

∫ u

0

b(y)dA(y). As α < 0, then we

have eαt

∫ t

0

e−2αudAb(u) ≤ eαt[

∫ t/3

0

e−2αudAb(u) +

∫ t

t/3

e−2αudAb(u)] ≤ Beαt/3 +
∫ ∞

t/3

e−αudAb(u), where Beαt/3 ∈ L1(0,∞) and the second term also belongs to

L1(0,∞), as

∫ ∞

0

tb(t)e−αtdA(t) < ∞. Finally, we can apply Theorem 8.7.9 (see [9],

p. 272) to equation (3.6), which gives (3.2) and the proof is completed.

Theorem 3.2. If m̃ < 1 and the conditions of Theorem 3.1 are satisfied, then

Q(t) = P(Z(t) > 0) ∼ Q0e
αt, t → ∞,(3.7)

where α < 0 is the Malthusian parameter defined by (2.10).

Proof. Using equation (2.1) it follows that the probability of non-extinction
Q(t) = 1 − Φ(t; 0) satisfies the equation

Q(t) = 1 − p

∫ t

0

h(u; Φ(t − u; 0))dA(u) + (1 − p)B(t).(3.8)

From (3.8) using the following expansion h(u; s) = 1 + m(u)(s − 1) + b(u)
2 ϕ(s)(s − 1)2,

where ϕ(s) is p.g.f., with ϕ(1) = 1 and ϕ(s) =
∞
∑

k=0

ϕksk, 0 ≤ ϕk ≤ 1, one obtains that

Q(t) = 1 − G(t) + p

∫ t

0

m(u)Q(t − u)dA(u)
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− p

∫ t

0

b(u)

2
Q2(t − u)ϕ(1 − Q(t − u))dA(u).(3.9)

Making the substitution Q(t) = Q0e
αt in (3.9) we obtain

Q0(t) =

∫ t

0

Q0(t − u)dÃ(u) + W (t),(3.10)

where Ã(t) is defined by (3.4) and

W (t) = e−αt[1 − G(t)] −
peαt

2

∫ t

0

Q2
0(t − u)e−2αuϕ(1 − Q(t − u))dAb(u).(3.11)

For the first term on the righthand side of (3.11) it was already proved in Theorem 3.1
that e−αt[1 − G(t)] ∈ L1(0,∞). Moreover, from the same theorem and the inequality
Q(t) ≤ M1(t), it follows that Q0(t) is bounded.

Therefore the second term in (3.11) will not exceed Kpeαt

∫ t

0

e−2αub(u)dA(u), as

|ϕ(1−Q(t− u))| ≤ 1. But in Theorem 3.1 we also proved that the last function belongs
to L1(0,∞). Finally, we can apply Theorem 8.7.8 (see [9]) to equation (3.10) and it
implies that Q0(t) → Q0, as t → ∞.

Next we will turn our attention to the existence of a stable distribution of the
population size. The tool we used is non-markovian renewal theory.

Theorem 3.3. Under the assumptions of the Theorem 3.1 it follows that there
exists

lim
t→∞

P(Z(t) = k|Z(t) > 0) = Pk , k = 1, 2, . . . ,

∞
∑

k=1

Pk = 1.

Proof. Denote R(t; y) = 1 − Φ(t; 1 − y), |y| ≤ 1. Then the equation (2.1) admits
the following renewal-type representation

R(t; y) = p

∫ t

0

[1 − h(u; 1− R(t − u; y))]dA(u) + yF̄1(t)F̄2(t).(3.12)

Using (3.9) it follows that

R(t; y) = p

∫ t

0

m(u)R(t − u; y)dA(u)+

(3.13) +p

∫ t

0

b(u)

2
R2(t − u; y)ϕ(1 − R(t − u; y))dA(u) + yF̄1(t)F̄2(t).

Making the substitution R(t; y) = eαtR̄(t; y) in (3.13) we obtain

(3.14) R̄(t; y) =

∫ t

0

R̄(t − u; y)dÃ(u) + peαtW̃ (t, y) + ye−αtF̄1(t)F̄2(t),

where W̃ (t, y) =

∫ t

0

b(u)

2
R̄2(t − u; y)e−2αuϕ(1 − R(t − u; y))dA(u) and Ã(u) is defined

by (3.4).
It is clear, that if |y| ≤ 1, then

(3.15) |R(t; y)| = |1 − Φ(t; 1 − y)| ≤ M1(t).|y| ≤ C1e
αt,

where α < 0 is the Malthusian parameter.
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Using (3.15) yields
∣

∣

∣

∣

∫ ∞

0

W̃ (t, y)dt

∣

∣

∣

∣

=

∫ ∞

0

[
∫ t

0

b(u)

2
R̄2(t − u; y)e−2αuϕ(1 − R(t − u; y))dA(u)

]

dt

=

∣

∣

∣

∣

∫ ∞

0

b(u)

2
e−2αudA(u)

∫ ∞

0

R̄2(t − z; y)ϕ(1 − R(t − z; y))dz

∣

∣

∣

∣

≤

≤ C2
1

∣

∣

∣

∣

∫ ∞

0

b(u)e−2αudA(u)

∣

∣

∣

∣

∣

∣

∣

∣

∫ ∞

0

M2
1 (t)e2αtdt

∣

∣

∣

∣

< ∞,

as

∫ ∞

0

b(u)e−2αudA(u) < ∞.

Applying the basic renewal theorem to the equation (3.14), one concludes that
there exists

lim
t→∞

R̄(t; y) =

p

∫ ∞

0

eαtW̃ (t, y)dt + y

∫ ∞

0

e−αtF̄1(t)F̄2(t)dt

p

∫ ∞

0

ue−αum(u)dA(u)

= R(y),

as |y| ≤ 1, i.e. R(t; y) = R(y)eαt(1 + o(1)), uniformly in 0 < y ≤ 1.

If we denote by Φ̃(t; s) =
∞
∑

k=1

P (Z(t) = k|Z(t) > 0)sk, i.e. Φ̃(t; s) is the conditional

p.g.f. conditioned on the event {Z(t) > 0}, we have the following representation

(3.16) Φ̃(t; s) = 1 −
1 − Φ(t; s)

1 − Φ(t; 0)
= 1 −

R(t; 1 − s)

Q(t)
.

Then (3.16) yields that Φ̃(t; s) is uniformly convergent as 0 ≤ s ≤ 1 and its limit

is 1 −
R(1 − s)

Q0
, which completes the proof.
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