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DIOPHANTIAN FIGURES AND DIOPHANTIAN CARPETS

Maria Nikolova Brancheva

In this paper we expose different constructions of Diophantian figures obtained with
the help of computer experiments and geometric considerations. The notion of Dio-
phantian figure was introduced in [1] and developed in [2].
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1. Recall of definitions. We shall consider the so-called Diophantian plane,
i.e. the Cartesian product Z × Z, where by Z is denoted the ring of integers. Clearly,
Diophantian plane is the lattice of all points in the plane of Decartes R × R, (R is the
field of real numbers) with integer coordinates (x, y), x ∈ Z, y ∈ Z.

We recall that Diophantian figure is defined by a set of points in Diophantian plane
under the condition that the distance between each couple of its points is a positive
integer. A Diophantian figure is called linear if its points lie on a line in the plane of
Decartes. In the contrary, i.e. in the case the figure contains at least three different
non-collinear points, we say that we have a flat Diophantian figure.

According to a theorem of P. Erdös each Diophantian figure defined by an infinite
number of different points is linear. So, flat Diophantian figures are always with a finite
number of points.

2. Diophantian triangles. Diophantian figures admit triangulation with Dio-
phantian triangles [2], called Diophantian triangulation. This implies that these figures
can be constructed by Diophantian triangles.

A large class of Diophantian figures can be obtained from Pythagorean triangles with
common cathetus (leg).

Proposition 1. The set of all Pythagorean triangles with fixed common cathetus is

finite.

Proof. Let (a, y, z) be an arbitrary Pythagorean triple with fixed cathetus a. Here
by z is denoted the hypotenuse and by y the other cathetus.

We shall consider the equality

a2 = z2 − y2 = (z − y)(z + y).

Clearly z − y and z + y must take a finite numbers of integer values, as they are divisors
of a2. Indeed, if z − y = p

k
, and z + y = q

l
, a2 = p

k
q

l
we obtain

z = 1/2(pk +ql) and y = 1/2(pk −ql),

where k and l are indices which take a finite numbers of values. �

Remark. Proposition 1 follows and by Erdös theorem cited above.
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Corollary. Each system of Pythagorean triangles with common cathetus determines
a Diophantian figure. The examples below are obtained by computer program selecting
Pythagorean triples with common cathetus.

(24, 143, 145), (24, 7, 25),

(660, 12091, 121090), (660, 4331, 4381), (660, 2989, 3061),
(660, 989, 1189), (660, 779, 1021), (660, 259, 709).

(840, 19591, 19609), (840, 11009, 11041), (840, 7031, 7081),
(840, 3551, 3649), (840, 1081, 1369), (840, 559, 1009),
(840, 41, 841).

We give a sketch for the first example. It defines a Diophantian figure with 4 points
(vertices)

In the case of second example, a Diophantian figure with 7 vertices is defined, in the
third case – with 8 vertices.

In all cases a triangulation composed by one Pythagorean triangle and other Dio-
phantian ones (respectively 1, 6 and 7) is determined.

A mathematical algorithm can be developed as follows. Setting

a = aα1

1
aα2

2
. . . aαn

n
, i.e.a2 = a2α1

1
a2α2

2
. . . a2αn

n

we can compare the divisors of a2 with the divisors of the product (z − y)(z + y).
As a result we obtain a number of equations of the following form

z − y = . . . and z + y = . . .

Solving these equations we obtain the result.
The number of divisors of a2 is equal to (2α1 +1)(2α2 +1) . . . (2αn +1), which shows

that the number of possible systems for z and y is very big, when αk are large enough.
However we take the following example: a = 24, a2 = 576 = 2632. Here we have
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(2.3 + 1)(2 + 1) = 21 divisors, and respectively a list of system for z and y as above. For
instance

z − y = 1, z + y = 2632 which gives non-integer solutions, and many other systems
which do not give integer solutions, but we have

z − y = 2.32, z + y = 25 which gives z = 25, y = 7,
z − y = 2, z + y = 2532 which give z = 145, y = 143. �

Proposition 2. If (a, b, c) are lengths of the sides of a Diophantian triangle, then

a2 + b2 + c2 is an even number.

Proof. In the case of Pythagorean triangle we have

a2 + b2 + c2 = 2c2.

In the case of a horizontal side

we have

a2 + b2 + c2 = 2h2 + 2c2 − 2c1c2.

In the general case of Diophatian triangle ABC with coordinates of the vertices
A(a1, a2), B(b1, b2), C(c1, c2)

we have

a2 + b2 + c2 = 2(a2

1
+a2

2
+ b2

1
+ b2

2
+ c2

1
+ c2

2
)−2(a1b1 +a1c1 + b1c1)−2(a2b2 +a2c2 + b2c2).

�
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Corollary. In each Diophantian triangle there are always an even number of sides
with odd length, i.e. 0 or 2. The distribution of the parity for the sides in a Diophantian
figure with fixed Diophantian triangulation can be reconstructed starting by an arbitrary
component of the considered triangulation.

3. Big Pythagorean triangles: a hypothesis. There are Pythagorean triangles
with an arbitrary large length of its sides.

Now we introduce the following integer-valued function k = π(n), n ∈ N.
By definition

π(n) = 0 if n is not a cathetus of Pythagorean triangle,
π(n) is the number of all Pythagorean triangles with n as a cathetus.

According some computer consideration on Pythagorean triples, here we state the
following hypothesis: the function k = π(n) is a slowly increasing function and it is true
that

lim
n→∞

(π(n)/n) = 0.

4. A Diophantian equation. Having in mind the condition of the Proposition 2,
here we can accept that a1 = a2 = 0.

Proposition 4. Setting c1 = x1, c2 = x2, we obtain the following Diophantian equa-

tion of first degree for x1 and x2

2b1x1 + 2b2x2 = c2 + b2 − a2.

For given coordinates (b1, b2) (i.e. for given position and length c of the segment AB)
we have that the solutions of the obtained Diophantian equations, if they exist, determine
points on a line, which is perpendicular to AB, the lengths a and b being arbitrary fixed.

Proof. Clearly, we have c2 = b2

1
+ b2

2
and b2 = x2

1
+ x2

2
. On the other hand we have

a2 = (b1 − x1)
2 + (b2 − x2)

2 (See the triangle B1BC on the draw below). The above
mentioned three equalities implies the proposition.
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According to the general theory of Diophantian equations of first degree, if (x0

1
, x0

2
)

is one solution, then all solutions are given by the following formulas [3]

x1 = x0

1
+ b2/〈b1, b2〉t, x2 = x0

2
− b1/〈b1, b2〉t,

where t is an integer, and 〈b1, b2〉 is the greatest common divisor of b1 and b2.

Eliminating t from the above two equations we receive for the solutions (x1, x2) that

x2 − x0

2
= −b1/b2(x1 − x0

1
).

This is an equation of a line, which passes through the point (x0

1
, x0

2
), perpendicularly to

the line of the segment AB. �

Remark. This proposition concerns the construction of a Diophantian triangle with
given sides a, b, c and given coordinates (b1, b2). The analogous construction in the clas-
sical planimetry is well known. Our construction don’t follows from the classical one.
It is of arithmetical character. Of course, the number of solutions is not infinite, when
c, a, b are fixed. The solutions are less then two. It was shown that the line determined
by these two points is perpendicular to the side AB as in the classical case. The above
written Diophantian equation is not always solvable. For instance, for its solvability it is
necessary the lengths b and c to be of the same parity. Indeed, c2 + b2−a2 must be even,
but according to Proposition 2, the same is valid and for c2 + b2 +a2, which implies that
c2 + b2 must be even too.

5. A kind of qualitative classification of Diophantian triangles. A classifi-
cation of different types Diophantian, but non-Pythagorean, triangles can be given with
the help of the notion of Pythagorean rectangle. This is a rectangle with an inscribed
triangle for which the supplementary area is covered by Pythagorean triangles. The
sketches below illustrate our idea.

We know different concrete examples of the above exposed sketches. Their uniqueness
is conjectured in [2].

6. Symmetries, Diophantian carpets.

In general Diophantian figures don’t admit symmetries. However some of them are
symmetric with respect to axes. Example is given below.
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In the next we collect different Diophantian figures and Diophantian carpets. By
definition Diophantian carpet is a figure which is equipped with a triangulation by Dio-
phantian triangles, but it is not itself a Diophantian figure.

I. Examples of non-symmetric Diophantian figures.

In the above sketch the triangles PQ3, 3R2, 2S1 are Pythagorean, and 123 is a
Diophantian one. Clearly, the triangulation of the rectangle PQRS is composed by four
Diophantian triangles. So, PQRS is a Diophatian carpet.

II. Infinite Diophantian carpets.

A simplest infinite Diophantian carpet is defined by a Pythagorean triple (a, b, c),
where a and b are considered as legs with the condition π(a) = π(b) = 1.
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III. Examples of a symmetric Diophantian carpet.
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