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LAGRANGE’S INTERPOLATION FORMULA

IN OLYMPIAD PROBLEMS

Tseno Vesselinov Tselkov, Nikolay Velitchkov Andreev

The paper considers some problems that can be treated by Lagrange’s interpolation
formula.

The main theoretical facts, which are used in the paper, are formulated in the following
two theorems

Theorem 1.Let f(x) = a0x
n + a1x

n−1 + . . . + an−1x + an, f(x) ∈ R[x], a0 6= 0,
g(x) = b0x

n + b1x
n−1 + . . . + bn−1x + bn, g(x) ∈ R[x], b0 may be 0 as g(x) may be of

degree less than n. Let α1, α2, . . . , αn+1 be distinct numbers, such that f(αi) = g(αi)
for i = 1, 2, . . . , n + 1. Then f(x) ≡ g(x).

Theorem 2 (Lagrange). Let n ∈ N and α1, α2, . . . , αn+1 be distinct numbers,

β1, β2, . . . , βn+1 be arbitrary numbers. Then there exists an unique polynomial f(x),
such that deg f ≤ n and f(αi) = βi for i = 1, 2, . . . , n + 1.

This polynomial is

f(x) =
n+1
∑

i=1

βi

n+1
∏

j 6=i, j=1

x − αj

αi − αj

.

known as Lagrange’s interpolation polynomial.

In the sequel some olympiad problems are discussed.

The first problem is taken from the shortlist of the International Mathematical Olympiad
(IMO) in 1981 in the United States.

Problem 1.A polynomial f(x), deg f = n, satisfies f(k) =
1

(

n+1

k

) for k = 0, 1, . . . , n.

Find f(n + 1).

Solution. Applying Lagrange’s interpolation formula directly, we get

f(x) =
n

∑

k=0

1
(

n+1

k

)

n
∏

i=0, i6=k

x − i

k − i
=

n
∑

k=0

∏n

i=0,i6=k(x − i)
(

n+1

k

)

(−1)n−k(n − k)!k!
=

=

n
∑

k=0

(−1)n−k n + 1 − k

(n + 1)!

n
∏

i=0,i6=k

(x − i).
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Setting x = n + 1 we get

f(n + 1) =

n
∑

k=0

(−1)n−k n + 1 − k

(n + 1)!

n
∏

i=0,i6=k

(n + 1 − i) =

=

n
∑

k=0

(−1)n−k

(n + 1)!

n
∏

i=0

(n + 1 − i) =

n
∑

k=0

(−1)n−k.

Thus,

f(n + 1) =

{

0, when n is odd
1, when n is even.

�

The next problem is from the shortlist of the IMO’79 in Great Britain.

Problem 2. A polynomial f(x), deg f ≤ 2n, satisfies |f(k)| ≤ 1 for every integer

k ∈ [−n, n]. Prove that for an arbitrary number x ∈ [−n, n] the inequality |f(x)| ≤ 22n

holds true.

Solution. According to Lagrange’s interpolation formula and Theorem 2

f(x) =
n

∑

k=−n

f(k)
n

∏

i6=k, i=−n

x − i

k − i
.

Since |f(k)| ≤ 1 for k = −n,−n + 1, . . . , n, then

|f(x)| ≤

n
∑

k=−n

|f(k)|

n
∏

i6=k, i=−n

|x − i|

|k − i|
≤

n
∑

k=−n

n
∏

i6=k, i=−n

|x − i|

|k − i|
.

We shall prove that for every real number x ∈ [−n, n], we have
n

∏

i6=k, i=−n

|x − i| ≤ (2n)!.

When x ≥ k, we have:
n

∏

i6=k, i=−n

|x − i| =
(

|x − (k + 1)| . . . |x − n|
)(

|x − (k − 1)| . . . |x + n|
)

≤ (n − k)!((n − k + 1) . . . (2n)) = (2n)!.

In the case x < k we prove the assertion analogously.

Using the last result, we get
n

∏

i6=k, i=−n

|x − i|

|k − i|
≤ (2n)!

n
∏

i6=k, i=−n

1

|k − i|
= (2n)!

1

(k + n)!(n − k)!
.

Then, using the well-known fact that

n
∑

j=1

(

n

j

)

= 2n, we get

|f(x)| ≤

n
∑

k=−n

(2n)!

(k + n)!(n − k)!
=

2n
∑

k=0

(2n)!

k!(2n − k)!
=

2n
∑

k=0

(

2n

k

)

= 22n,

which ends the proof. �
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The third problem is from another shortlist – that of the IMO’77 in Yugoslavia

Problem 3. Integers x0 < x1 < . . . < xn and a polynomial f(x) = xn + a1x
n−1 +

. . . + an−1x + an, f(x) ∈ R[x], are given. Prove that there exists i ∈ {0, 1, . . . n}, such

that |f(xi)| ≥
n!

2n
.

Solution. By Lagrange’s interpolation formula and Theorem 2 we get:

f(x) =
n

∑

i=0

f(xi)
n

∏

j 6=i, j=0

x − xj

xi − xj

.

Let us assume that the assertion of the problem is not true, i.e. |f(xi)| <
n!

2n
for

i = 0, 1, . . . , n. Since the senior coefficient of the polynomial f(x) is equal to the sum

of the senior coefficients of the products f(xi)

n
∏

j 6=i, j=0

x − xj

xi − xj

, then the absolute value of

the senior coefficient of f(x) verifies
∣

∣

∣

∣

∣

∣

n
∑

i=0

f(xi)
n

∏

j 6=i, j=0

1

xi − xj

∣

∣

∣

∣

∣

∣

<
n

∑

i=0

n!

2n

n
∏

j 6=i, j=0

1

|xi − xj |
≤

n
∑

i=0

n!

2n

1
i−1
∏

j=0

(i − j)

1
n
∏

j=i+1

(j − i)
=

1

2n

n
∑

j=0

(

n

j

)

= 1 .

(We have used the fact that xi − xj ≥ i − j (i > j) since x0, x1, . . . , xn are integers
satisfying x0 < x1 < . . . < xn.)

But the senior coefficient of f(x) is 1, which is a contradiction, thus proving the
assertion of the problem. �

The following problem is taken from the shortlist of the IMO’97 in Argentina.

Problem 4.Let p be a prime number and let f(x) be a polynomial with deg f = d
and f(x) ∈ Z[x], satisfying the following two conditions:

(i) f(0) = 0, f(1) = 1;
(ii) for every positive integer n, the remainder of f(n) divided by p is either 0 or 1.
Prove that d ≥ p − 1.

Solution. Let us assume that d ≤ p − 2. Then, according to Theorem 2, f(x) is
determined by its values in 0, 1, . . . p − 2. By Lagrange’s interpolation formula, we have

f(x) =

p−2
∑

k=0

f(k)
x(x − 1) . . . (x − k + 1)(x − k − 1) . . . (x − p + 2)

k!(−1)p−k(p − k + 2)!
.

Setting x = p − 1 in this formula, we get

f(p − 1) =

p−2
∑

k=0

f(k)
(p − 1) . . . (p − k)

k!(−1)p−k
=

p−2
∑

k=0

f(k)(−1)p−k

(

p − 1

k

)

.

Now, a simple induction on k shows that if p is a prime and 0 ≤ k ≤ p − 1, then
(

p − 1

k

)

≡ (−1)k (mod p). This is certainly true for k = 0. Then, if we assume that
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for an integer k with 1 ≤ k ≤ p − 1 we have

(

p − 1

k − 1

)

≡ (−1)k−1 (mod p), using the

well-known facts that

(

p − 1

k

)

=

(

p

k

)

−

(

p − 1

k − 1

)

and that

(

p

k

)

is divisible by p, we get
(

p − 1

k

)

≡ (−1)k (mod p), which completes the induction argument.

Using the last relation, we get that

f(p − 1) ≡ (−1)p

p−2
∑

k=0

f(k) (mod p).

This can be rewritten as f(0) + f(1) + . . . + f(p − 1) ≡ 0 (mod p). Setting S(f) =
f(0) + f(1) + . . . + f(p − 1), we get S(f) ≡ 0 (mod p). Now, it suffices to show
that the above relation contradicts to conditions (i) and (ii). It follows from (ii) that
S(f) ≡ k (mod p), where k denotes the number of those n ∈ {0, 1, . . . , p − 1} for which
f(n) ≡ 1 (mod p). On the other hand (i) implies that k ≤ p − 1 and k ≥ 1. Hence,
S(f) 6≡ 0(mod p). We get a contradiction, which proves the assertion of the problem. �

The last problem is from the United States of America Mathematical Olympiad in
1995.

Problem 5.Let q0, q1, q2, . . . be an infinite sequence of integers with the following

properties:

(i) (m − n) divides (qm − qn) for arbitrary m > n ≥ 0;
(ii) there exists a polynomial P (x), P (x) ∈ R[x], such that |qn| < P (n) for every n.

Prove that there exists a polynomial Q(x), Q(x) ∈ Q[x], such that qn = Q(n) for

every n.

Solution. Let deg P = d. According to Lagrange’s interpolation formula there exists
a polynomial Q(x), such that deg Q ≤ d, Q(x) ∈ Q[x] and Q(i) = qi for i = 0, 1, . . . , d,
i.e.

Q(x) =

d
∑

i=0

qi

d
∏

j 6=i, j=0

x − j

i − j
.

We shall prove that qn = Q(n) for every n.
Let k be the least common multiple of the coefficients of Q(x) and let rn = k(Q(n)−

qn). Then we have r0 = r1 = . . . = rd = 0.
Since |rn| ≤ k(|Q(n)|+ |qn|) < k(|Q(n)|+ P (n)), then there exists a polynomial R(x)

such that deg R ≤ d and |rn| < R(n) for every n.
Since (m − n)/(qm − qn) for arbitrary m > n ≥ 0, then (m − n)/(rm − rn) for

arbitrary m > n ≥ 0 because (m − n)(Q(m) − Q(n)). This implies that for every n > d
and 0 ≤ i ≤ d we have (n − i)/(rn − ri) = rn.

Hence, the least common multiple of n, n − 1, . . . , n − d divides rn.
To continue the solution we need the following

Lemma.For arbitrary positive integers a1, a2, . . . , am the following inequality holds

true

l.c.m.(a1, a2, . . . , am) ≥
a1a2 . . . am

∏

1≤i<j≤m

g.c.d.(ai, aj)
,
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where l.c.m. stands for the least common multiple and g.c.d. for the greatest common

divisor.

Proof. Let ei be the power of a certain prime number p in the canonical represen-
tation of ai for i = 1, 2, . . . , m. Then, the power of p in the canonical representation
of l.c.m.(a1, a2, . . . , am) is max(e1, e2, . . . , em), whereas its power in the canonical rep-

resentation of
a1a2 . . . am

∏

1≤i<j≤m

g.c.d.(ai, aj)
is e1 + e2 + . . . + em −

∑

1≤i<j≤m

min(ei, ej). So, it

suffices to prove that max(e1, e2, . . . , em) ≥ e1 + e2 + . . . + em −
∑

1≤i<j≤m

min(ei, ej).

The last inequality holds true as in the sum of the right-hand side every ei, excluding
ek = max(e1, e2, . . . , em), appears as a result of the couples (ek, ei) and there are also
other terms in that sum, resulting from the couples (ei, ej) where i, j 6= k. So, the last
inequality holds true clearly. �

Now, let us go back to the problem.

We will prove that there exists a number N such that the inequality l.c.m.(n, n −
1, . . . , n − d) > R(n) holds true for every n ≥ N . We have

∏

0≤i<j≤d

g.c.d.(n − i, n − j) =
∏

0≤i<j≤d

g.c.d.(n − i, j − i) ≤
∏

0≤i<j≤d

(i − j) = A.

So, applying the Lemma and the last result for the numbers n, n − 1, . . . , n − d, we
get:

l.c.m.(n, n − 1, . . . , n − d) ≥
n(n − 1) . . . (n − d)
∏

0≤i<j≤d

g.c.d.(n − i, n − j)
≥

n(n − 1) . . . (n − d)

A
.

Since the right-hand side of the last inequality is a polynomial of degree d+1, whereas
deg R ≤ d, then for sufficiently large n we have

n(n − 1) . . . (n − d)

A
> R(n).

But since l.c.m.(n, n − 1, . . . , n − d) divides rn and l.c.m.(n, n − 1, . . . , n − d) >
R(n) > |rn|, then rn = 0 for n ≥ N . Since for arbitrary m ≥ N and n < N we have that
(m− n) divides (rm − rn) = −rn, then rn = 0 for every n < N . Hence, rn = 0 for every
n, which means that qn = Q(n) for every n and we are done. �
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