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This article focuses on the mathematical model of tubulin polymerization and depoly-
merization which is a generator for the high frequency oscillations in the pituitary
cells.

1. Introduction. The hypothalamus controls the secretion of gonadotropins by the
pulsatile secretion of gonadotropin-releasing hormone (GnRH) into the portal circulation
of the pituitary. The major physiological action of GnRH is expressed through activation
of G-protein-coupled GnRH receptors in the plasma membrane of gonadotrophs and the
resulting changes in cytosolic Ca2+ levels [1] leading to the stimulation of the exocytotic
release of both luteinizing hormone (LH) and follicle – stimulating hormone (FSH) [8]
from the pituitary gonadotrophs.

Pulsatile secretion in a plasma LH concentration was first reported in ovariectomized
rhesus monkeys [2]. During the last years high frequency oscillations (high frequency
pulses) were observed in the secretion of LH [4], [5] and FSH release [5]. Iranmanesh
et al., [3] have proposed that intensive sampling procedure increases the probability for
detection of high frequency pulses. The protein tubulin is found in every cell of all
eukaryotes. α − β tubulin dimers form long, rigid polymers called microtubules (MTs).
Experimental evidence of oscillations in vitro with period of 1 to 3 min (high frequency
oscllatons) in the process of microtubule assembling were found by Mandelkow et al.,
[6], but not in the pituitary cells. All biological oscillators exhibit a common feature
of essentially nonlinear systems. In this context the theoretical description of rhythmic
phenomena is based on the theory of self-sustained oscillator as a basis for the description
of intracellular tubulin oscillator.

This article focuses on the hypothesis of tubulin polymerization and depolymerization
as a generator of high frequency oscillations in pituitary cells.

2. Mathematical modelling of high frequency oscillations in LH. A quanti-
tative mathematical model [9] is developed using the experimental data of [1], [2], [8], etc.
The last four equations in this model describe the oscillatory mechanism of LH release
from the pituitary cell:

dY1

dt
= a1(b1 − Y1)[b2 + U1(t)]Y2 − a2U2(t) − a3Y1 − a4(1)
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dY2

dt
= −c1

dY1

dt
+ a5U1(t) − a6Y2 − a7Y1 − a8(2)

dY3

dt
= (b3 + a9U3(t) − Y3)a10Y1(3)

dY4

dt
= c2

dY3

dt
− a11Y4(4)

Equations (1) and (2) are concerned with the oscillations (of 1-3 min period) of the
tubulin polymerization in the Golgi region, while equations (3) and (4) describe the LH
release through the membrane in blood serum. The notations in the equations are as
follows: t stands for the time, Y1 is the concentration of polymerized tubulin, Y2 is the
concentration of Mg2+ ions in the region of polymerization, Y3 is the concentration of
the LH molecules which are expulsed through the cell membrane, Y4 is the concentration
of the LH in blood serum. The input functions U1(t), U2(t) and U3(t) link the system
equations (1) – (4) with the rest of equations of the mathematical model [9]. U1(t) is
the concentration of proteins phosphorylated by PKC or CaM products in the zone of
microtubules, U2(t) is the free concentration of Ca2+ in the cytoplasm, U3(t) is the con-
centration of synthesised LH. ai – rate constants, where i = 1, . . . , 11, bj – concentration
constants, where j = 1, 2, 3 and cq – proportional coefficients, q = 1 or 2. All variables
are given in concentration scale ng/ml.

3. System of differential equations for tubulin pulse generator. Certain con-
ditions and factors are necessary for the polymerization of tubulin. GnRH, for example,
depends on secondary mediators like microtubule-associated proteins (MAPs), Ca2+, etc.
[7]. Apart from this the polymerization is carried out in the presence of magnesium ions
Mg2+, guanosine triphosphate (GTP), MAPs or a high level of protein concentration.
Oscillations are generated by interplay between microtubule stabilzers and destabilizers.
Microtubule stabilizers are GTP, glycerol, Mg2+, MAPs, or high protein concentration.
Destabilizers include GDP, Ca2+, elevated ionic strength, and a range of drugs. It has
been established that the proteins phosphorylated by PKC participate in the process of
tubulin polymerization and depolymerization by MAPs phosphorylation. It is supposed
that there is a linear dependence between the MAP concentration CMAP and U1(t), i.e.
CMAP ∼ b2 +U1(t), where U1(t) is the concentration of proteins phosphorylated by PKC
or CaM products in the area of microtubules, and the concentration constant b2 is the
basic level of U1(t). According to the mathematical model [9] the velocity of formation
of the polymerized tubulin is equal to:

(vp) = a1(b1 − Y1)[b2 + U1(t)]Y2 + a4(5)

where b2 is the initial concentration of the nonpolymerized tubulin; (b1 − Y1) the con-
centration of the nonpolymerized tubulin; a4 is the additive constant of (vp) indicative
of its constant level, regardless of the factors mentioned above. According to Zengbush
[7] the most significant factors that facilitate the disassembly of highmolecule monomeric
compounds, i.e. the depolymerization, are Ca2+ ions, low temperature, pressure, etc. It
is assumed that there is a linear dependence between the disassembly velocity (vn) of the
polymerized tubulin Y1 and two negative feedbacks:

(vn) = −a2U2(t) − a3Y1(6)
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The inhibitive effect of the Ca2+ ions can be expressed by the negative feedback −a2U2(t).
The velocity constant −a2 expresses the size (dimension) of this effect, and U2(t) is the
free concentration of Ca2+ ions in the citoplasm. The other negative feedback −a3Y1

expresses the velocity of the disassembly of the polymerized tubulin. The velocity of
alteration of the polymerized tubulin concentration, i.e. Y1 is equal to:

Y1

dt
= (vp) − (vn)(7)

If (5) and (6) are substituted in (7) is obtained:

Y1

dt
= a1(b1 − Y1)[b2 + U1(t)]Y2 − a2U2(t) − a3Y1 − a4(8)

The equation depicts the velocity of formation of the polymerized tubulin. The velocity
of alteration of dY2/dt of the concentration Y2 of Mg2+ ions decreases proportionally
to dY2/dt, i.e. it is −c1(dY 1/dt)] and expresses the spontaneous neutralization of the
Mg2+ ions, which is proportional to the concentrations Y2 and Y1 (the latter is necessary
for support of the already formed tubulin molecules). The member (−a7Y1) reveals the
concentration of the tubulin polymers, and (−a6Y2) reflects the process of eliminating
Mg2+ ions from the system. The process of tubulin polymerization and depolymerization
is quasi periodical. This process is not likely to occur at a constant concentration of
the Mg2+ ions. It is highly probable that the factors, stimulating the polymerization
process will assist in the depolymerization process, so that a oscillating process will be
obtained. It is generally assumed that there is a linear dependence between the Mg2+

ions and the concentration U1(t) of proteins phosphorylated by PKC or CaMK products
the microtubuline area. The latter gear the processes of decomposition (disintegration),
i.e. Mg2+ = a5U1(t). Taking into consideration what is stated above concerning Y2, if
can be written in a linear proximation:

Y2

dt
= −c1

Y1

dt
+ a5U1(t) − a6Y2 − a7Y1 − a8(9)

where a5, a6, a7 are velocity constants, c1 is the proportionality coefficient and a8 is
the additive constant. High frequency oscillations are generated by an interplay between
microtubule stabilizers and destabilizers. By appropriately chosen constants in equations
(1) and (2) the solution Y1 describing a high frequency process in the Golgi region was
obtained. The values of parameters of the mathematical equations (1) – (4) are as follows:
– rate constants: a1 = 2.2× 10−3(ng/ml)−2h−1, a2 = 1665× 103h−1, a3 = 6× 10−3h−1,
a4 = 0, a5 = 187 × 103h−1, a6 = 4 × 10−2h−1, a7 = 13.6h−1, a8 = 17 × 102(ng/ml.h),
a9 = 1.4 · 103h−1, a10 = 2 · 10−5h−1, a11 = 4.102h−1;
– concentration constants (ng/ml): b1 = 5.106, b2 = 3.33 · 10−4, b3 = 8 · 104;
– proportional coefficients: c1 = 0.0034, c2 = 2;
– initial conditions (ng/ml): U(0) = 0.0001, V (0) = 0.01, Y1(0) = 25, Y2(0) = 1700,
Y3(0) = 0.005, Y4(0) = 0.0001.
The model meanings of the constants have been chosen adequately: 1) all of them are

positive, 2) express actual biochemical and biophysical dimensions, selected on the basis
of the existing knowledge of the processes taking place in the pituitary and in accordance
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Fig. 1 Comparison between the experimental records (upper panel) and model predictions (bot-

tom panel). Typical pattern of LH release (ng/ml) (upper panel) after double injection of 1

µg GnRH to an intact anoestrous ewe sampled every 15 second. Arrows indicates the times of

GnRH injections. The model predictions of LH release (ng/ml) (bottom panel).
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with the principles that are observed. Taking into account the meanings of the constants
included in the differential equations, the solution of Y1 is obtained as a high-frequency
process in the Golgi apparatus are called a generator of high frequency oscillations or
tubulin pulse generator (TPG). This TPG is the reason for the high frequency of response
LH from the pituitary. In Yanev [10] the relation between function Y1(t) and Y4(t) from
the parameters of the mathematical model [9] is derived i.e.

Y4(t)

Y1(t)
≈ µ = const(10)

From (10) follows that amplitudes Atub and ALH differ only by coeffcient of proportion-
ality µ, i.e.

Atub = µALH(11)

while the frequency and the damping coefficent are equal:

Ωtub = ΩLH =
2π

TLH

(12)

λtub = λLH(13)

where λtub, Ωtub, Atub and λLH , ΩLH , ALH are the damping coefficient, the frequency
and the amplitude of polymerized tubulin and LH hormone, respectively. The numerical
values of the mathematical model are chosen so that a satisfactory agreement with respect
to the form and the amplitude is obtained between the model output Y4(t) (Figure 1) and
the evidence for the experimentally recorded LH(t) concentrations in the blood serum of
ewes (Figure 1), as well as for some concentration and rate constants.

The agreement shows that the ratios between the values of the mathematical model
parameters are properly chosen but this is not valid with certainty for their absolute
numerical values. The comparison of the periods obtained from the experimental data
of LH [6], the experimental results for the tubulin oscillations [9] and the model results
[12] are in good agreement and confirm the correctness of the rate constant options.

Conclusion. In conclusion, this study expands our knowledge for the processes
of tubulin polymerization and depolymerization in the zone of microtubules in the go-
nadotrophs where granulated LH and FSH are concentrated. The tubulin polymerization
and depolymerization is the last step of the processes leading to the high frequency re-
lease of LH and FSH from the pituitary cell. It is suggested that equations (1 and 2) from
the mathematical model describe the high frequency oscillations in the LH response thus
defining a generator of high frequency oscillations or the sp called tubulin pulse generator.
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