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We develop Galerkin spectral technique for solving boundary value problems arising
in natural convection. They consist of a fourth-order b.v.p. for the stream function
coupled to a second-order b.v.p. for the temperature. As a basis are used the set of so-
called Beam functions introduced by Lord Rayleigh and the set of Fourier functions.
The formulas for the cross expansions between the two sets are derived and a Galerkin
spectral algorithm is created. A featuring example is solved and the issues of the rate
of convergence and truncation error are clarified.

1. Introduction. The treatment of boundary conditions is of crucial importance
in numerical modelling of physical problems. Very often a difference or finite-element
scheme can be rendered useless by a non-adequate approximation of the boundary con-
ditions. This is especially true when the operators are of higher order and require more
than one boundary condition. A typical example is furnished by the convective flows
of viscous liquids, where a fourth order b.v.p. for the stream function is coupled to a
second-order b.v.p. for the temperature. The application of standard elliptic solvers is a
nontrivial matter for such flows.

There is a compelling need to develop fast spectral algorithms allowing a rapid inter-
rogation of parameter space in order to discover and understand mechanisms of flow, and
instability. The performance of a spectral method depends heavily on the type of the
basis system. An elucidating discussion on the performance of different sets of functions
can be found in the encyclopedic book of Boyd [2].

A way to overcome the difficulties connected with the boundary conditions is to use
spectral methods with basis functions that satisfy the boundary conditions. A spectral
expansion with a basis set which does not satisfy all of the boundary conditions would
exhibit very poor convergence near the boundaries. For instance, the Fourier functions
satisfy only one of the b.c. at each boundary. For the plane-parallel viscous flows (e.g.,
Poisuille flows) the so-called “beam” functions can be used to this end. They were
proposed by Lord Rayleigh [9] to solve the vibration problems of elastic beams and since
applied to different problems from fluid dynamics (see [3]).

The application of the Beam-Galerkin method to Poiseuille flow is already developed
(see [8], [4]). We go a step further here and consider the generic boundary value problem
of convective flows of viscous liquids.
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2. Posing the problem. Consider the 2D flow in a vertical slot with a linear
vertical temperature gradient, differentially heated walls, and harmonic gravity modula-
tions. The problem definition is well-described in the literature (refer to [1], [6]), and the
notation we use is standard:

x =
x∗

L
− 1, y =

y∗

L
, ω = ω∗

L2

κ
, t = t∗ω∗, ψ =

ψ∗

ν
, θ =

T ∗

δT
+ x− τBy

where: ν is the kinematic viscosity, κ the thermal diffusivity, 2L the width of the slot,
and δT the horizontal temperature difference. The asterisk denotes dimensional variables,
while the same notation without an asterisk stands for the respective dimensionless quan-
tity. The Rayleigh number Ra, the Prandtl number Pr, and stratifications parameter,
γ, are defined as:

Ra =
βg0δTL

3

νκ
, Pr =

ν

κ
, 4γ4 = τBRa.

where β is the coefficient of thermal expansion of the liquid, g0 the mean gravity, ε the
dimensionless amplitude of gravity modulations, ω the dimensionless frequency, and τB

is the dimensionless vertical temperature gradient.
For a comprehensive investigation of the 2D flow we refer the reader to [5]. The

problem also admits a plane-parallel solution of the form Ψ(x, t),Θ(x, t) for which the
governing system reduces to the following:

ω

Pr

∂3Ψ

∂t∂x2
= −Ra

[

1 +
∂Θ

∂x

]

[1 + ε cos(t)] +
∂4Ψ

∂x4
(1)

ω
∂Θ

∂t
= τB

∂Ψ

∂x
+
∂2Θ

∂x2
(2)

with the boundary conditions

Ψ =
∂Ψ

∂x
= Θ = 0 for x = ±1 ,(3)

The 1D flow was first treated in [6] where different regimés of flow were studied. The
parametric bifurcation of the 1D solutions was studied in detail in [5] by means of a fully
implicit difference scheme and a related 1D problem in [10]. As far as we are concerned
here with developing of a new technique we should avoid the unnecessary complications
connected with the oscillatory nature of the solutions in time. For this reason we focus
our attention on a steady problem (ODE) with qualitatively similar structure of the
spatial operators.

The higher-order coupled b.v.p. for an ODE system which retains all of the important
terms in the full-fledged unsteady problem for the thermal convection in a vertical slot:

d4Ψ

dx4
= Ra

[

−1 +
dΘ

dx

]

+
1

Pr

∂2Ψ

∂x2
, Θ − τB

dΨ

dx
=
d2Θ

dx2
,(4)

Ψ = Ψx = Θ = 0, for x = ±1.

We find the above system generically representative of the problem under considera-
tion because it retains the second spatial derivatives. In a sense, it can be considered as
a simplification of an Euler time-stepping scheme with time increment equal to one.
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3. The spectral method. Consider the Sturm-Liouville problem

d4u

dy4
= λ4u , u =

du

dy
= 0 , for x = ±1 .(5)

The nontrivial solutions (eigen-functions) of this problem are given by

sm =
1√
2

[

sinhλmx

sinhλm

− sinλmx

sinλm

]

, cotanh λm − cotanh λm = 0 .(6)

cm =
1√
2

[

coshκmx

coshκm

− cosκmx

cosκm

]

, tanh κm + tan κm = 0 .(7)

These functions were introduced by Lord Rayleigh to solve problems arising in beam
theory and are sometimes called “beam” functions. A major step in the advancement
of the application of the beam functions to fluid-dynamics problems was made by Poots
[8]. The magnitudes of the different eigen values can be found in most of the above cited
works from the literature. Chandrasekhar [3] derived their counterparts for problems
with cylindrical symmetry.

The derivatives can be expressed in series with respect to the system as follows

c′n =

∞
∑

m=1

anmsm , anm =
4κ2

nλ
2
m

κ4
n − λ4

m

(8)

s′n =
∞
∑

m=1

ānmcm , ānm =
4κ2

mλ
2
n

−κ4
m + λ4

n

(9)

c′′n =
∞
∑

m=1

βnmcm, bnm =







4κ2
nκ

2
m

κ4
m − κ4

n

(κm tanh κm − κn tanh κn) m 6= n

κn tanh κn − (κn tanh κn)2 m = n

(10)

s′′n =

∞
∑

m=1

β̄nmsm, b̄nm =







4λ2
nλ

2
m

λ4
n − λ4

m

(λncotanhλn − λmcotanhλm) m 6= n

λncotanhλn − (λncotanhλn)2 m = n

(11)

Formulas expressing the third derivatives and the products of two beam functions into
series with respect to the system wcan be found in [4], [7].

For the convective problem under consideration the difficulties arise from the fact
that the boundary value problem for temperature function is of second order which
means that the system of beam functions is not suitable for expanding the temperature
field. It is clear that the best suited to the task system are the trigonometric sines and
cosines. Hence we need to develop expressions for expanding the beam functions into
trigonometric functions and vice versa:

sin lπx =

∞
∑

k=1

σlksk(x), σlk =
2
√

2lπ(λk)2(−1)l

l4π4 − λ4
k

(12)

cos lπx =
∞
∑

k=1

χlkck(x), χlk =
2
√

2κ3
k(−1)l+1 tanh κk

l4π4 − κ4
k

(13)
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cn(x) =
∞
∑

l=1

χ̂nl cos lπx, χ̂nl =
2
√

2κ3
n(−1)l+1 tanh κn

l4π4 − κ4
n

(14)

sn(x) =

∞
∑

l=1

σ̂nl sin lπx, σ̂nl =
2
√

2lπ(λn)2(−1)l

l4π4 − λ4
n

(15)

to which has to be added also the expansion of unity in series of cn functions.

1 =

∞
∑

k=1

hkck(x), hk =

∫ 1

−1

ck(x)dx =
2
√

2 tanh κk

κk

(16)

We point out that the convergence when expanding unity and cos(lπx) into ck series
is first order k−1 (see (13)) due to the fact that it does not satisfy both b.c. for the beam
functions. It satisfies the condition on the derivatives but fail to satisfy the conditions
on the function itself. Clearly, the situation with the sin(lπx) is better and the rate
of convergence is of second order k−2 (see (12)) because the sine functions satisfy the
boundary conditions on the functions and the disagreement is more subtle since the
conditions on the first derivative are not satisfied. The situation with the expansions of
sx and ck in Fourier series is reversed. The order of convergence for ck is l−4 (see (14)),
and for sx is l−3 (see (15)). As it will be shown in what follows, this property is of crucial
importance for the overall rate of convergence.

4. Results and discussion. Because of the obvious symmetry of the boundary
value problem under consideration we can seek a solution in which the stream function
is even and the temperature is odd function. Then we can develop the sought functions
into the following series

Ψ(x, t) =

K
∑

k=1

pkck(x), Θ(x, t) =

K
∑

k=1

dk sin(kπx),(17)

Upon introducing these expansions into (1), (2) and making use of the above compiled
formulas, an algebraic system for the coefficients dk and pk is derived

−κ4
i pi +

1

Pr

N
∑

j=1

pjβij = −Ra
[

N
∑

m=1

dm

mπ2
√

2(−1)m+1κ3
i tanh κi

m4π4 − κ4
i

− 2
√

2 tanh κi

κi

]

for i = 1, . . . , N.(18)

(1 + l2π2)dl = τB

N
∑

n=1

N
∑

m=1

pn

8
√

2κ2
nκ

2
mlπ(−1)l

(κ4
n − κ4

m)(l4π4 − κ4
m)

for l = 1, . . . , N.(19)

The results for the coefficients pi and dl are presented in Fig. 1. The peculiar finding
is that the rate of convergence for Θ is algebraic of fifth order while the rate for Ψ is
one order lower (fourth order). The analytical explanation of this phenomena will be the
object of a separate study. Here it suffice to mention that the off-diagonal elements in
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Solid line: pi; Dashed line: pi = 350i−4

Solid line: di; Dashed line: di = 0.03i−5

Fig. 1. The rate of convergence for the coupled system for Ra = 6000, Pr = 1 and τB = 0.001.
The upper panel shows the spectral coefficient for function Ψ; the lower panel shows Θ.

(18) can degrade the rate of convergence, while in the equation (19) for Θ no off-diagonal
elements are present and the convergence is of fifth order.

The fourth order for the rate of convergence means that a number of terms N = 100
is fully adequate to obtain results with very high precision 10−8.
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