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SOME RECENT ADVANCES IN VALIDATED METHODS
FOR IVP’S FOR ODE’S"

Nedialko S. Nedialkov, Kenneth R. Jackson

We present an overview of interval Taylor series (IT'S) methods for IVPs for ODEs
and discuss some recent advances in the theory of validated methods for IVPs for
ODEs, such as, an interval Hermite-Obreschkoff (IHO) scheme, the stability of ITS
and THO methods, and a new perspective on the wrapping effect.

1. Introduction. We consider the set of autonomous I'VPs

(1) y'(t) = fly)
(2) y(to) € [yol,

where t € [tg, t,,] for some t,, > to. Here ty and t,,, € R, f € C*~1(D), D C R" is open,
f:D—R" and [yo] C D.

We consider a grid {9 < t; < -+ < t,, and denote the stepsize from t;_; to t; by
hj—1 =t; —tj—1. We denote the solution of (1) with an initial condition y(t;-1) = y;—1
by y(t;tj—1,y;—1). For an interval vector [y;—1], we denote by y(¢;t;—1, [y;—1]) the set of
solutions {y(t;tj—1,yj-1) | yj—1 € [yj-1] }-

Our goal is to compute interval vectors [y;], 7 = 1,2,...,m, that are guaranteed to
contain the solution of (1-2) at t1,ta,...,t,. That is,

y(tj;to, [y()]) - [yj]v for ] = 1327' -, m.

Usually, validated methods for IVPs for ODEs are one-step methods, where each step
consists of two phases [7], [9]:

Algorithm I: validate existence and uniqueness of the solution with some stepsize, and

Algorithm II: compute a tight enclosure for the solution.

We present an overview of interval Taylor series (ITS) methods for IVPs for ODEs
and discuss some recent advances in the area of validated ODE solving. In particular,
we discuss
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e an interval Hermite-Obreschkoff (THO) scheme for computing tight enclosures on
the solution [5];

e instability in interval methods for IVPs for ODEs due to the associated formula
for the truncation error [5], which appears to make it difficult to derive effective
validated methods for stiff problems; and

e a new perspective on the wrapping effect [6], where we view the problem of reduc-
ing the wrapping effect as one of finding a more stable scheme for advancing the

solution.
Notation. We use [-] to denote intervals and interval vectors and matrices. For an
interval [a] = [a, @], we define its width, magnitude, and midpoint by
w(la]) = a-gq,
lla]] = max{|a|,|a[}, and
m([d]) = (a+a)/2,

respectively. We define width, magnitude, and midpoint componentwise for interval
vectors and matrices.
We define the sequence of functions fl1(y), i =0,1,2,..., by

Oy = v,

) [i—-1]
fm(y) = % <3f8y f) (y), fori>1.

For the autonomous IVP (1), fll(y;) = y¥(t;)/i!. That is, fll(y;) denotes the ith
Taylor coefficient of y(t;t;,y;) expanded around ¢;.

2. Overview of interval methods for IVPs for ODEs.
2.1. Validating existence and uniqueness of the solution. Using the Picard-
Lindel6f operator and the Banach fixed-point theorem, one can show that if h;_; and

[?130‘_1] D [y;—1] satisty

3) [Gj-1] = lyj—1] + [0, hja] £([751]) € 155 4),

then (1) with y(¢;—1) = y;j—1 has a unique solution y(¢;t;_1,y,-1) € [gj—1] for all t €
[tj—1,t;] and all y;_1 € [y;—1], [1]. A method based on (3) can be implemented easily, but
a serious disadvantage of this approach is that it often restricts the stepsize Algorithm II
could take.

If we use more Taylor series terms in the sum in (3), we obtain a high-order Taylor
series enclosure method [8]. In the latter, we determine h;_; and [g§;—1] such that

S
[

(4) (t—tj—0) F 0 yion) + (= t-0)* F((G5-1]) S [5-1]

%

Il
=

holds for all ¢t € [tj_l,tj_l + hj_l] and all Yj—1 € [yj—l]. Then (1) with y(tj_l) =Yj-1
has a unique solution y(t;t;_1,y;-1) € [gj—1] for all t € [t;—1,t;] and all y;_1 € [y;—1].
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In [8], we show that, for many problems, an interval method based on (4) is more
efficient than one based on (3).

2.2. Computing a tight enclosure of the solution.Consider the Taylor series
expansion

(5) Yi =Yj— 1+Zh 1f[] y] 1)+hk lf (y7 Jj— 17t])7

where y;—1 € [y;—1], and I (yst j—1,t;) denotes f¥ with its [th component (I =
1,2,...,n) evaluated at y(£;—1,) for some &;_1; € [tj_1,t;]. Let

k—1

(6) [Sja]l =T+> K, J (fm; [yj,l)] and (2] = h¥_ fM([g;-4]),
=1

where J (1% [yj—1)] is the Jacobian of f1 evaluated at [y;], and [2;] is an enclosure of
the local error.
If we apply the mean-value theorem to fl in (5) and use (6), we obtain that, for any

Uj-1 € [yj-1],

k—1

(7) y(tjsto, [yol) € [y;] = -1 + Zh§_1fm (Fj-1) + [z5] + [Sj—1)([yj-1] = Fj-1).

We can compute enclosures on the solution of (1-2) with (7). However, this approach
frequently works poorly, because the interval vector [S;_1]([y;—1]—9;—1) may significantly
overestimate the set

{S;-1(yj—1 — 9j-1) | Sj—1 € [Sj-1)s yj—1 € [yj-1] }.

Such overestimations normallly accumulate as the integration proceeds. As a result, we
have the wrapping effect [4].

Lohner’s QR-factorization method. Lohner’s QR-factorization method [3] is one
of the most successful, general-purpose methods for reducing the wrapping effect. In this
method, we compute

y] *y] IJFZh 1f y] 1) [Zj]Jr([Sj I]AJ 1)[7’]'*1]’

instead of (7), and propagate

[rj] = (A7 ([Sj-1] Aj—1)) [rj—1] + A ([25) — m([z]),
where

Jo = ([yO]) [7’0] = [yo] — g0, and

g = - 1+Zh @) +m((z]) (= 1).
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Here, Ag = I, and for j > 1, A; is the orthogonal matrix from the QR factorization of
m([Sj_1]A4;_1). One explanation why this method is successful at reducing the wrapping
effect is that we enclose the solution on each step in a moving orthogonal coordinate
system that “matches” the solution set [3].

3. An interval Hermite-Obreschkoff method. Recently, we developed an
interval Hermite-Obreschkoff (THO) method [5], which is based on the formula

q

P
Z(_l)zcg’ph;'qu (yj) = Cf’qhz'qu (yj-1)
=

=0 i

1p)
(8) + (*1)‘1%@1“]%] (y;sti—1,t5),

where ¢ = ql(g+p—19)!/((p+ ¢)! (g — 1)), (¢,p, and i > 0), y;—1 = y(t;—1;t0,Y0), and
y; = y(tj;to, Yo)-

The method we propose in [5] consists of a predictor phase and a corrector phase.
The predictor computes an enclosure [y;)] of the solution at ¢;, and using this enclosure,
the corrector computes a tighter enclosure [y;] C [y9] at t;. If ¢ > 0, (8) is an implicit
scheme. The corrector applies a Newton-like step to tighten [y?]

We have shown in [5] that for the same order and stepsize, our ITHO method has
smaller local error, better stability, and requires fewer Jacobian evaluations than an ITS
method. The extra cost of the Newton step is one matrix inversion and a few matrix

multiplications.

4. Instability from the formula for the truncation error. We considered in
[5] the ITS and IHO methods when applied with a constant stepsize h and order k to
the test problem

9) ¥y = Ay, y(0) =yo,
where A and yp € R, and A < 0.
.
Let Ty (2) = Zzi/i!. We showed in [5] that, if
i=0
[ AR[*

(10) T + 2

> 1,

the ITS method is asymptotically unstable, in the sense that lim;_, w([y;]) = co. There-

fore, we have restrictions on the stepsize not only from the function Tj_1(\h), as in point

methods for IVPs for ODEs, but also from the factor |\h|*/k! in the remainder term.
Let

R (Z) _ f:O C?qj'_!% Q (Z) _ icq@ (_Z)Z and
P:q - q ap(=2)’ pai=/ T
i=0Ci Tl i=0
q'p!
e T gl
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We showed in [5] that, when applied to (9), the IHO method is asymptotically unstable
in the sense that lim;_. w([y;]) = oo for h satisfying

Yp.q |>\h|k
|@p.g(AR)] K

Roughly speaking, the stepsize in the ITS method is restricted by both

(11) IR, o (AR)] + > 1.

Al
R

|Tk—1(AR)| and

while in the IHO method, the stepsize is limited mainly by

Vp,q |)‘h|k
|@p.g(AR)] K

In the latter case, Vp q/@p,q(AR) is usually much smaller than one; thus, the stepsize limit
for the IHO method is usually much larger than for the I'TS method.

An important point to note here is that an interval version of a standard numerical
method, such as the Hermite-Obreschkoff formula (8), that is suitable for stiff problems
may still have a restriction on the stepsize. To obtain an interval method without a
stepsize restriction, we must find a stable formula not only for the propagated error, but
also for the associated truncation error.

5. A new perspective on the wrapping effect. = The problem of reducing
the wrapping effect has usually been studied from a geometric perspective as finding an
enclosing set that introduces as little overestimation of the enclosed set as possible. For
example, parallelepipeds, ellipsoids, convex polygons, and zonotopes have been employed
to reduce the wrapping effect (see [6] and the references there in).

In [6], we linked the wrapping effect to the stability of an ITS method for IVPs for
ODEs and interpreted the problem of reducing the wrapping effect as one of finding a
more stable scheme for advancing the solution. This allowed us to study the stability
of several ITS methods (and thereby the wrapping effect) by employing eigenvalue tech-
niques, which have proven so useful in studying the stability of point methods. Here, we
outline our main results.

Consider the IVP

(12) y' =By, y(0)=yo,

where B € R"*™ and n > 2, and let T = Tj—1 (hB).
When applied with a constant stepsize and order to (12), Lohner’s QR~factorization
scheme reduces to

(13) lyj] = Tigi-1+ (Q;R;)[rj—1] + [2]

(14) )] = Rilrioa]+ Q7 ([23] — s4),

where

(15) QO =1 and TQj—l = QjRj7 fOI‘j 2 1.
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The interval vector [r;] in (14) can be interpreted as an enclosure of the global error that
is propagated to the next step. Since

w(lr]) = R;lw([rj-1]) +1Q; [w([z;])

(see [6]), we can consider |R,;| as the matrix for propagating the global error in the QR
method. A key observation in [6] is that (15) is the simultaneous iteration for computing
the eigenvalues of T' (see for example [10]). This iteration is closely related to Francis’
QR algorithm [2] for finding the eigenvalues of T'.

Eigenvalues of distinct magnitudes. Assuming that T is nonsingular with eigen-
values of distinct magnitudes, we showed in [6] that

Tim p(R;]) = p(R) = p(T),

and the upper bound for the global error of Lohner’s method is not much bigger than
the bound for the global error of the corresponding point Taylor series method, for the
same stepsize and order.

Eigenvalues of equal magnitude. Assuming that T is nonsingular with at least
one complex conjugate pair of eigenvalues and at most two eigenvalues of the same
magnitude, we showed in [6] that, as j — oo,

e if T has a dominant complex conjugate pair of eigenvalues, then p(|R;|) > p(T),
and p(R;) oscillates; and

e if T has a unique real eigenvalue of maximal modulus, then we should generally
expect that p(|R;|) — p(T).

The analysis is more difficult in this case, but we illustrated with examples in [6] that
the global error in Lohner’s method is normally not much bigger than the global error
of the corresponding point Taylor series method.
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HAKONU CBbBPEMEHHNM METOIM C BEPU®PUKAIINAA 3A PENTABAHE HA
3AIOJAYA HA KOIIN 3A Oy

Hensanko C. Hensankos, Kener IlxkekcbH

Hampaser e 0630p Ha MeTOONWTE, M3MOI3BAINKN MHTEPBAIHNA TeMTbPOBU PA3BUTHSI 33
pemasane 3amada Ha Komwm 3a OIIY. Pasrnenanu ca HSIKOM CHBPEMEHHUM METOOU C
BepuduKanms Ha Pe3yJITATUTE 32 PelllaBaHe Ha CBINATA 33034, KaTO HAIPUMeD eInH
WHTEPBAJIEH BapuaHT Ha MeTona HAa Epmmr-O6pemxkos. O6ChbaeHa € TIXHATA yCTOM-
YUBOCT, KaKTO 1 edexTa Ha 3aBbPTaHe HA WHTEPBAIHATA OOBIBKA HA MHOXKECTBOTO
OT peIleHus.
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