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This work studies some problems arising in image processing, computational geometry
and robot guidance due to uncertainty and imprecision in the envionmental model
and the input data. More precisely, based on so-called Epsilon-geometry approach
combined with morphological techniques we find ε-connected components of a given
object and analyse the opportunities for approximations of the skeleton of the object.

1. Imprecise computations In many practical tasks we operate with imprecise
or uncertain data, especially when this data comes as an output from some measuring
instrument. This problem appears in image processing because of the distortion effect,
and often because of nonprecise calibration of the camera. Therefore lots of work have
been done for the development of algorithms which give reliable results operating with
imprecise data.

The basic idea of interval mathematics is that the set-theoretic intervals are the con-
sistent context for numerical computing. However, for example, in solving equations with
interval coefficients algebraic completeness of the interval operations is required which
is not guaranteed by the ordinary set-theoretic interval operations. One possible way to
correct the situation is to use modal interval analysis [3]. Modal interval analysis define
intervals starting from the identification of real numbers with the families of predicates
they satisfy or not. Let us consider the family of set-theoretic intervals I(R) and the set
of predicates on R denoted by Pred(R) = {P|P : R 7→ {0, 1}}. A modal interval is an
element of the cartesian product (I(R), {∀, ∃}). Then a modal interval with first element
[a, b] (a ≤ b) is reffered to as proper if it is characterized by those predicates true for all
points (the second element of the couple is the quantifier ∀), while it is called improper

if it is characterized by those predicates true for at least one point in [a, b] (the second
element of the couple is the quantifier ∃). Then for a ≤ b the improper interval with
first part [a, b] is denoted simply by [b, a] and is said to be of negative direction. Detailed
description of the generalized interval arithmetic operations can be found in [3] and [11].

The Epsilon-Geometry framework follows the idea of modal interval analysis for solv-
ing geometric problems. It is based on a general model of imprecise computations, which
includes rounded-integer and floating-point arithmetic as special cases [5]. The Epsilon-
Geometry framework defines the notion of an epsilon predicate as a means for creating
approximate tests. Let O be a set of objects in a space supplied with a metric, or pseu-
dometric d. Let P be a predicate defined on O. Then for any X ∈ O and any ε > 0, let us
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define an epsilon version of P [4], [5].Say that ε−P(X) = true if and only if P(X ′) = true

for some X ′, d(X, X ′) ≤ ε. (−ε) − P(X) = true if and only if P(X ′) = true for all

X ′, d(X, X ′) ≤ ε. For instance a polygon is said to be (−ε)-convex if it remains convex
under any perturbation to its vertices in disks with radius ε > 0.

2. Basic morphological operations. Here and henceforth, by P(X) we denote the
power set of X , i.e. the family of all subsets of the set X . Then every translation-invariant
dilation is represented by the standard Minkowski addition: δA(X) = A ⊕ X = X ⊕ A,
and its adjoint erosion is given by Minkowski subtraction: εA(X) = X 	 A [6]. Then
closing and opening of A by B are defined as A •B = (A⊕B)	, A ◦B = (A	B)⊕B,
These operations are referred to as classical or binary morphological operations.

3. Connectivity and epsilon-geometry.

3.1. Connectivity on complete lattices. In mathematics, the notion of connec-
tivity is formalized in the topological framework in two different ways. First, a set is
called to be connected when it cannot be partitioned as a union of two open, or two
closed sets. In practice, it is more suitable to work with the so-called arcwise connec-

tivity. A set X is said to be arcwise connected when for every two distinct points a
and b from X there exists a continuous curve joining a and b and lying entirely in X .
Arcwise connectivity is more restrictive then the general one. It is not difficult to show
that any arcwise connected set in Rn is connected. The opposite is not true, elsewhere
we consider only open sets in Rn.

Arcwise connectivity is widely used in robot motion planning. The motion planning
task is to find a path, i.e. a continuous sequence of collision-free configurations of the
robot (or any moving agent referred to as a robot), connecting two arbitrary input
configurations (the start configuration qb and the final configuration qe) whenever such a
path exists, or indicate that no such path exists. The negative result means that the query
points qb and qe lie in different connected components of the free configuration space.
In this case it is evident the profit of studying approximate connectivity – if there are
uncertainties in the robot metrics and control parameters, the robot may collide with the
obstacles when moving through narrow passages in the workspace [7], [1]. If the geometric
models of the robot and the workspace are imprecise, the approximate connectivity
approach could be useful in practice, especially when the path planner captures the
connectivity of the robots configuration space by building a probabilistic roadmap [7], a
network of simple paths connecting points picked in random in this space, or when using
wave wave-propagation algorithm [1].

In image analysis, several notions of digital connectivity has been introduced. Usually,
they exploit the definition of arcwise connectivity in a discrete way – depending on the
regarded neighbourhood relation ( 4-square, 8-square, hexagonal, etc.) [13]. Following
the the works of Serra [13] and Heijmans [6], an abstract connectivity framework, suited
mainly for analysis and processing of binary images has been developed. It is strongly
related with the mathematical morphology concepts. The base concept is the connectivity

class:

Definition 3.1.Let E be an arbitrary set. A family C of the subsets of E is called a

connectivity class if the following properties hold:

1. ∅ ∈ C and {x} ∈ C for every x ∈ E ;

2. If Ei ∈ C for i ∈ I and
⋂

i∈I Ei 6= ∅ , then
⋃

i∈I Ei ∈ C.
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Also it is sometimes useful to impose additional conditions, such as translation in-

variance of the connectivity. It hasn’t been imposed in the previous works [13, 12]. This
condition can be replaced by more general one, namely affine invariance of connectivity.
However, in our work it is sufficient to work only with translation-invariant operators.

Given a connectivity class in a universal set E we can define the maximal connected
component of a set A ⊆ E containing a particular point x:

γx(A) =
⋃

{C ∈ C |x ∈ C and C ⊆ A}

Then it can be proved easily that [6]:
— For every x ∈ E γx is a morphological opening in E;
— γx({x}) = {x}.
— either γx(A) = γy(A) or γx(A) ∩ γy(A) = ∅.
—

⋃

x∈E γx(A) = A.

It is easy to demonstrate that X ∈ C if and only if for every two points x, y ∈ X it
follows that γx(X) = γy(X).

It is easy to demonstrate the following result:

Theorem 3.2. If X and A are connected with respect to the connectivity class C, then

X ⊕ A is connected with respect to C as well.

This theorem is a straightforward generalization of Theorem 9.59 from [6], where only
arcwise connectivity is considered.

Finding maximal connected components is found to be useful in computer-aided to-
mography for separating the different tissues on the image.

Let S be a binary relation between the subsets of a universal set E, i.e.
3.2. Epsilon-geometry approach. Let γx be the connectivity openings in E

associated with the path – connectivity (the usual arcwise connectivity in the continuous
case E = Rn, or its discrete analogs as mentioned above). Let K ⊆ E be a connected
structuring element which contains the origin. Then we can define another family of
openings: γ′

x(A) = A ∩ γx(A ⊕ K) for every point x ∈ A. These openings are
connectivity openings with respect to the connectivity class C ′ = {D ⊆ Rn |D ⊆ C ⊆
D ⊕ K for some connected set C ∈ C}, (see Example 9.62 from [6]). Then having as a
base the usual path connectivity in its continuous or discrete versions, we can introduce
the notion of epsilon connectivity.

Definition 3.3.A set X ⊆ E is called ε-connected if it is connected with respect the

connectivity class C ′ when K = Bε(0) is the disk with radius ε centered at the origin.

An example of this notion is given on figure 1.
If P and Q are non-empty compacts in Rn, then

dist (P, Q) = inf{ε |Q ⊆ P ⊕ Bε(0) , P ⊆ Q ⊕ Bε(0)}.(1)

is known as Hausdorff distance between P and Q. In practice, in all image processing
and robot control tasks we work with compact sets. Therefore our definition of epsilon-
connectivity is correct, since for every set X ′ from C′ there exists a set X from C such
that dist (X, X ′) ≤ ε. Here, the notion of (−ε)-connectivity is not useful, since we
should have a connectivity class, which elements must have the property, that all sets at
a distance not greater than ε should be path–connected for ε > 0.
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Fig. 1. The hatched region becomes ε-path-connected addding the disk, with ε equal to the

radius of the disk

4. Set skeletons and its epsilon–construction.

4.1. Set skeleton–definition. Let A be a compact (closed and bounded) set in
Rn. The skeleton of A is defined as the set of the centres of maximal balls inscribed in
A, i.e.

SK(A) = {x ∈ int (A) | (∃r > 0)

(∀r′ > 0)(∀x′ ∈ Rn)[(Br(x) ⊆ Br′(x′) ⊆ A) ⇒ (x = x′ & r = r′)]}.

Here and henceforth int (A) denotes the interior of the set A, while cl (A) and ∂A denote
the topological closure and the border of A, respectively. For the main topological
properties of the skeleton see [9].

4.2. Medial axis and its relations with the skeleton. Let us consider an
n-dimensional linear space M over the field of natural numbers R or over the ring of
integers Z , called domain. Let K ⊆ M be bounded centrally symmetric structuring
element.

Let A be an arbitrary subset of M . Consider the function d[A, K] : M → N defined
as follows:

d[A, K](x) =

{
max{m ∈ N |x ∈ A \m−1 K} if x ∈ A
0 if x /∈ A

Denote A \ (K⊕n) = A \ (K ⊕ . . . ⊕ K
︸ ︷︷ ︸

n−times

), for n ≥ 1 and A 	0 K = A. This function is

called distance transform of A by the structuring element K [6].
Let us define medial axis of the set A by the structuring element K in the following

way: MA(A, K) = {x ∈ A | d[A, K](x) ≥ d[A, K](y) for every y ∈ Kx}, i.e. the medial
axis MA(A, K) is the collection of extremal points for the distance transform.
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Theorem 4.1Let A be a compact set from Rn with nonempty interior. Then SK(A) ⊆
MA(A, Bε(0)) for any positive ε.

Theorem 4.2.Let A be a compact set from Rn with nonempty interior. Then

MA(A, Bε(0)) ∩ int (A) ⊆ SK(A) ⊕ Bε(0)

The upper lemmas and theorems are proved in [10].
Consider an example of an object – two big enough disks connected with a line

segment. Its skeleton consists only of the centres of the two disks, while the medial axis
by Br(0) is made of two disks with radius r centered at the centres of the big disks
together with the connecting segment. Therefore the stronger then the statement of the
last theorem inclusion MA(A, Br(0)) ⊆ SK(A) ⊕ Br(0) is not true.

Having in mind the definition of Hausdorff distance, our result shows that the ap-
proximation is one-side in general. Therefore, the medial axis is not an approximation
of the skeleton in the terms of ε-geometry. Therefore we found the reason why in some
practical applications, the approach using the medial axis construction leads ocasionally
to non-connected skeleton for a connected set. Alternatively, for a boundary represented
object, one can use an approximate construction of its skeleton by using the Voronoi
diagram of a discrete sample set over its boundary [2] to obtain a thin set which do not
break. In the case we know all the pixels of the region we want to skeletize, we may use
a heuristic aprroach based on consecutive morphological thinnings by suitably chosen
structuring elements, which often leads to satisfactory results [6].
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