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CELLULAR NEURAL NETWORKS —
DYNAMICS AND COMPLEXITY"

Angela Slavovava

In this paper, Cellular Neural Networks (CNNs) are presented. Since their invention
in 1988, the investigation of CNNs has envolved to cover a very broad class of prob-
lems and frameworks. Many researchers have made significant contributions to the
study of CNN phenomena using different mathematical tools. CNN is simply an ana-
logue dynamic processor array, made of cells, which contain linear capacitors, linear
resistors, linear and nonlinear controlled sources. In the paper, a survey of the main
types of dynamic equations describing CNNs is made. CNN with hysteresis in the
feedback circuit is studied here. Bifurcation, periodic solutions and chaos are proved
for some classes of CNN.

One of the most interesting aspects of the world is that it can be considered

to be made up of patterns. It is characterized by the order of the elements of

which it is made rather than by the intrinsic nature of these elements.
Norbert Wiener

1. Introduction to the Cellular Neural Network paradigm. Many phe-
nomena with complex patterns and structures are widely observed in the nature. For
instance, how does the leopard get its spots, or how does the zebra get its stripes, or
how does the fingerprint get its patterns? These phenomena are some manifestations of
a multidisciplinary paradigm called emergence or complexity. They share a common uni-
fying principle of dynamic arrays, namely, interconnections of a sufficiently large number
of simple dynamic units can exibit extremely complex and self-organizing behaviors.

The invention, called Cellular Neural Network (CNN), is due to L. Chua and L. Yang
[1, 2] in 1988. Many complex computational problems can be formulated as well-defined
tasks where the signal values are placed on a regular geometric 2-D or 3-D grid, and
the direct interactions between signal values are limited within a finite local neighbor-
hood. CNN is an analog dynamic processor array which reflects just this property: the
processing elements interact directly within a finite local neighborhood.

The concept of CNN is based on some aspects of neurobiology and adapted to inte-
grated circuits. For example, in the brain, the active medium is provided by a sheet-like
array of massively interconnected excitable neurons whose energy comes from the burn-
ing of glucose with oxygen. In cellular neural networks the active medium is provided by
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the local interconnections of active cells, whose building blocks include active nonlinear
devices (e.g., CMOS transistors) powered by DC batteries.

Let us consider a two-dimensional grid with 3 x 3 neighborhood system, as it is shown
in Fig.1.

(2,1) (2,2) (2,3)
(3,1) (3,2) (3,3)
Fig. 1.

The squares are the circuit units — cells C(4, ), and the links between the cells indicate
that there are interactions between linked cells. One of the key features of a CNN is that
the individual cells are nonlinear dynamical systems, but that the coupling between them
is linear. Roughly speaking, one could say that these arrays are nonlinear but have a
linear spatial structure, which makes the use of techniques for their investigation common
in engineering or physics attractive.

We shall give two general definitions of a CNN which follows the original one [1, 2]:

Definition 1.1. The CNN is a

a). 2-, 3-, or n-dimensional array of

b). mainly identical dynamical systems, called cells, which satisfies two properties:
¢). most interactions are local within a finite radius r, and

d). all state variables are continuous valued signals.

Definition 1.2. A cellular neural network is a high dimensional dynamic nonlin-
ear circuit composed by locally coupled, spatially recurrent circuit units called cells. The
resulting net may have any architecture, including rectangular, hexagonal, toroidal, spher-
ical and so on. An M x M CNN is defined mathematically by four specifications:

1). CNN cell dynamics;

2). CNN synaptic law which represents the interactions (spatial coupling) within the
neighbor cells;

3). Boundary conditions;

4). Initial conditions.

Remark 1.1. The space variable is always discretized and the time variable ¢ may
be continuous or discrete.

Remark 1.2. The interconnection between cells is usualy represented by the cloning
template which may be a nonlinear function of state x, output y, and input u of each
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cell C(i,j), within the neighborhood N, of radius r [1]:
N, (i,5) ={C(k,D)|maz{|k —i|,[l - j|} <r1<kE<M,1<I< M}
Moreover, the cloning template has geometrical meaning which we can be exploited to

provide the geometric insights and simple design methods.

2. The main types of differential equations describing CNNs. Suppose for
simplicity that the processing elements of a CNN are arranged on a 2- dimensional (2-D)
grid (Fig.1). Then the dynamics of a CNN, in general, can be described by:

(2.1) Tij(t) = —@(t) + Z Akt (1), i (1)) +
C(Kl)EN(ij)
+ Z Bijpa(ur, wig) + Iij,
C(Kl)EN,(ij)
(2:2) Yii (t) = f(zi;),

1<i< M, 1<j<M,

Tij, Yij, Wi refer to the state, output and input voltage of a cell C(i,7); C(ij) refers to
a grid point associated with a cell on the 2-D grid, C(kl) € N,(ij) is a grid point (cell)
in the neighborhood within a radius r of the cell C(ij), I;; is an independent current
sourse. A and B are nonlinear cloning templates, which specify the interactions between
each cell and all its neighbor cells in terms of their input, state, and output variables. In
[6,8] the templates are considered to be in the following more general form:

i 0 p1 O i 0 0 0
A=|p2 2 p2 |, B=|p3s 1 p3 |,
0 p1 O 0 0 O

with p1 = c1yriyij, p2 = colexp(yr—1], p3 = c3(ug—ui;) in order to assure the stability of
the nonlinear CNN. Moreover, A and B are called in [1,2] feedback and control operators.
Some useful output functions f are:
~ piece-wise linear sigmoid” function [1,2]:

1
(2.3) flxi) = §(|93ij = 1| = |@i; + 1Y),

— piece-wise linear sigmoid function with [0,1] output [6,8]:

0, Tij < 1
(2.4) flij) =q =iy, 0<ay; <1,
1, Tij > 1
"Sigmoid function has the following properties vi; = f(xi;), i.e. |f(zi;)] < ¢ = const., and

(df (z45)/dzij) > 0.
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— nonlinear function [7]:
2 1,
(2.5) f(Iij) = ;tcm (§K$ij),

etc.
In [8] more general output function with its own dynamics is proposed:

(2.6) Yij = —Yij + [(xi5),

as a higher order dinamical system.
The delay template elements contribute two additional terms:

(2.7) Z AiTj,klykl (t—71)+ Z BiTj,klukl(t - 7).

C(kl)EN(i5) C(kl)ENr(ij)

In the case of single variable A and B, the linear (space-invariant) cloning templates
are represented by the following additive terms [1,2]:

(2.8) S Agmyn®+ D Bijmun(t).

C(R)EN, (ig) C(R)EN(if)

In this case, when the template is space invariant, each cell is described by simple iden-
tical cloning templates defined by two real matrices A and B. Continuous input(output)
signal values are presented by values in the range [—1,1] or [0, 1].

Without loss of generality we can assume [1, 2]:

(2.9) gy (O] < 1, iy (0)] < 1.

Now in terms of definition 1.2 we can make a generalization of the above dynamical
systems describing CNNs. For a general CNN whose cells are made of time-invariant
circuit elements, each cell C(ij) is characterized by its CNN cell dynamics :

(2.10) .fij = —g(mij,uij,lfj),

where x;; € R™, u;; is usualy a scalar. In most cases, the interactions (spatial coupling)
with the neighbor cell C(i + k, j + ) are specified by a CNN synaptic law:

(2.11) I = AyjruTivkj+ Aijrt * fri(@igs i ja1) +
+Bij,kl * Uitk j4+1(1).

The first term A;; p1&itk,j41 of (2.12) is simply a linear feedback of the states of the
neighborhood nodes. The second term provides an arbitrary nonlinear coupling, and the
third term accounts for the contributions from the external inputs of each neighbor cell
that is located in the N, neighborhood.

3. Bifurcation, periodic solutions and chaos in CNNNs. CNNs are complex
nonlinear dynamical systems, and therefore one can expect interesting phenomena like
bifurcations and chaos to occur in such nets.
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Consider a CNN described by the normalized system equations:
dx(T)
dr

The state vector x is produced by lining up every row of the cell states in sequence,
then we have x € R", n = M.M and the relation zj to x;; is given by [6,8,13]

Ty =i/ Vsat, 1 =((k—1)divM)+1, j=((k—1)mod M)+ 1,

(3.1) =—a(17)+ Ay(r) + Bu+ I = F(z).

Vsat is the saturation voltage of the cell. The vector u is the input of the network, I is
the offset of cells, both are assumed to be constant, A and B are usually sparse matrices
with a banded structure containing the template coefficients at proper places. The output
y € R™ is a piece-wise linear sigmoid function (2.3). For the analysis of the dynamical
system (3.1), the stability properties of its equlibrium points should be investigated. An
associated linear system in the sufficient small neighborhood of an equilibrium point z
of (3.1) can be given by
(3.2) % = DF(Z)z,
where z = # — Z, and DF(Z) = J is known as the Jacobian matrix of the equilibrium
point and can be computed by
(3.3) T, = %F;u:x.
According to the stability theory of dynamical systems, it is well-known that if all eigen-
values of J have negative real parts, then the equilibrium point x = Z is asymptotically
stable. On the contrary, if one of the eigenvalues of J has a positive real part, then the
equilibrium point T is unstable. In general, if none of the eigenvalues of J have zero real
part, then the equilibrium point Z is hyperbolic.

In [5] the dynamical system (3.1), is considered in the case when the output y is
allowed to exibit hysteresis. In other words, the hysteresis output y = h(x) is a real
functional determined by an “upper” function hy and a “lower” function hy. (Fig.2)

hys |
*1/ 411

Fig. 2. Hysteresis nonlinearity
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The functions hy and hj, are real valued piece-wise continuous, differentiable func-
tions. Moreover, h(z) is odd in the sence that

(3.4) hy(x) = —hp(z),

and also hy = hy, for |z| sufficiently large.

Because of the hysteresis type of nonlinearity in each cell of a CNN, it is resonable
to divide M x M-dimensional Euclidean space into different types of regions. Stability
region (SR) is defined for all z, such that |z| > 1 and |h(z)| > 1. In the hysteresis region
(HR), |h(z)| < 1 for all |x| < 1. The definition of this region comes from hysteresis
nonlinearity in the feedback system of our CNN (3.1). Partial stability region (PSR) is
considered for |z| < 1, |h(z)| > 1 and |z| > 1, |h(z)| = 1. Then the following theorems
hold:

Theorem 3.1. In the stability region (SR) any state equilibrium point for our CNN
will be asymptotically stable. In other words, after the transient has decayed to zero, any
trajectory within this stability region will converge asymptotically to the corresponding
unique state equilibrium point.

Theorem 3.2. In the hysteresis region (HR), for any |x| <1, such that |h(v;)| <1,
the state equilibrium points will be unstable. In other words, after the transient has
decayed to zero, if hy(x) = —hp(—x), any trajectory will not be convergent to the state
equilibrium point.

Theorem 3.3. In the partial stability region we have two possible cases:
i). |x| > 1, then the state equilibrium points are stable;
ii) |x| < 1, then the state equilibrium points are unstable.

Remark 3.1. From the above theorems one can conclude that a CNN with hysteresis
can only converge to a state equilibrium point in the regions in which |z| > 1 (stability
region and part of the partial stability region). If the network has reached a stable state
its outputs can only be +1 or —1. In other words we have binary outputs, which property
has a lot of applications in pattern recognition and signal processing.

In [13] the following two-cell autonomous CNN with opposite-sign template is consid-
ered:

(3.5) i1 = -z +pf(ar) - sf(z2),
&ty = —wxa+sf(x1)+pf(z2),

p>1,8>0, f is piece-wise linear function (2.3). In this system, Hopf-like bifurcation
has been found, at which the flow arround the origin ( equilibrium point of (3.5)) changes
from asymptotically stable to periodic.

Let us rewrite (3.5) in the following form:

(3.6) i1 = Fi(z,,p) =~z + (L4 p) f(21) — sf(22),
By = Fy(w1,m2,p) = —x2 + sf(x1) + (1 + p) f(22),

where assume that p— 1 = p € (=4,0), d > 0, s > 0.
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Obviously (3.6) has always an equilibrium point at « = 0. The Jacobian matrix is
given as

JODF(o,u)HS ;S]

The following result concerning the global bifurcation has been proved in [13]:

Theorem 3.4. For the system (5.6)

1). u=pi=s is a global bifurcation point of the system in which new equilibria are
created;

2). for p € (po, p}) with 0 < pe < pi there is a stable limit cycle surrounding the
origin,

3). for p € (13, pg) with us > pi although the origin is an unstable focus, the network
is completely stable, almost all solutions tend to one of the stable equilbria created in this
bifurcation.

In [6] an analogous two cell autonomous CNN has been considered where f(z) =

% — . Then the following theorem can be proved [6]:
3

Theorem 3.5. For the two-cell CNN (3.6) with f(x) = % —x:

i). u=p* =0 is a bifurcation point of the system. This is a local bifurcation of the
only system equilibrium,;

). for u € (=2, u*) the origin is a stable focus;

i), for pu € (pu1,—2), some u; < —2 < p* the origin is an unstable focus surrounded
by a stable limit cycle.

In [14] a chaotic attractor in a three-cell autonomous CNN has been reported. The
dynamics of the system can be described by the set of ODEs:

(3.7) @1 +x1 = pif(e) —sf(x2) — sf(xs)
By +x2 = —sf(x1) +paf(xe) —rf(x3)
i3 +x3 = —sf(x1)+rf(x2)+psf(xs),

where p; > 1, p2 > 1, p3 <1, r,s > 0, the input u and the bias current I are set to zero.
By solving (3.7) with the following parameter set: p; = 1.25, po = 1.1, ps = 1, s = 3.2,
r = 4.4 and initial condition #(0) = (0.1,0.1,0.1), a strange attractor can be observed.
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KJIETbYHO HEBPOHHU MPE>KHN - IMHAMMKA 1 KOMIIJIEKCHOCT

Anxkesa CaasoBa

B rtasu crarus ca npeacrasenu Kierbano Hesponnu Mpexu (KHM). Ot TsixaOTO
oTKpuBaHe 1pe3 1988r., m3cie/BaHETO UM € HACOYEHO KbM MHOIO IIMPOK KJAC OT
3a7a4u U sBjeHus. MHoro uscienosaresu ca JonpuHecIu 3a udydasaHero Ha KHM
KaTo 3a IeJITa Ca U3NO0JI3BaHU pa3uyHu MaTemarudecku Meroqu. KHM npencrasisasa
aHAJIOrOBa JIMHAMUYHA IPOIECOPHA MPeXKa, U3IPAJIEHa OT KJIETKU, KOUTO ChIbPXKAT
JIMHEHN KOHJEH3AaTOPH, JUHEHHN PE3UCTOPH, JIMHEHHN M HEJIMHEHHN KOHTPOJHU H3-
TouHuIM. B Ta3u craTus ce npasu 0630p Ha OCHOBHHUTE THIIOBE JJMHAMUYIHY yPABHEHUS
onucBammu KHM. M3ayuasar ce nuunamuyanure cBoiicrBa Ha KHM ¢ xucrepesuc BbB
Bepurarta 3a obpaTHa Bpb3Ka. 3a Hskou KjaacoBe KHM ca mokasanum Gudypkanum,
[IEPUOUYIHYU PEIIEHUs U Xa0C.
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