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Here we follow a pattern of constantly evolving scheme of the classical series of
Bernoulli trials. Related random variables, probability distributions, processes, mod-
els, results and limit theorems are briefly marked. Their areas of application are
selectively presented. The ways of this development, some new ideas, new results and
directions of further studies and applications are the main goal of this article.

1. Introduction and historical remarks. Bernoulli trials are repeated trials
that obey the following conditions:

• Each trial yields one of two outcomes, often called “success” (S), and “failure” (F );

• For each trial the probability of S is the same, usually denoted by p = P (S), and
the probability of F is denoted by q = 1 − p = P (F );

• The trials are independent: the probability of S in a trial does not change, given
any information about outcomes of other trials.

Tossing a coin, rolling a die, random sampling of a ball from an urn of equal balls with
replacements, are the usual examples of sequences of Bernoulli trials.

Let ω be the random outcome of a Bernoulli trial (BT). Define variables Xi associated
with the i−th BT, and Xi(ω) = 1 if ω = S, and Xi(ω) = 0 if ω = F. The quantity
p = P (Xi = 1) is called parameter of the Bernoulli distribution, represented by the table

Xi 0 , 1
p(x) 1 − p , p

,

and the random variables (r.v.) Xi are called Bernoulli’ r.v.
Denote by

(1) Sn = X1 + X2 + · · · + Xn

the total number of S-s in n consecutive BT-s. The ratio
Sn

n
is called relative frequency.

The first significant result in probability is considered the following:

*This research was partially funded by FAPESP research foundation of Sao Paulo, Grant No.
99/08263-1.
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Bernoulli Theorem (Law of Large Numbers): If P (S) = p, and if ε > 0, then

P

{

|Sn

n
− p| < ε

}

→ 1 as n → ∞.

In other ways of writing, in textbooks one can see this result in the form Sn/n
p→ P (S),

meaning that the relative frequency of successes approaches (in probability) the proba-
bility of success in a single trial, as the number of trials increases indefinitely.

The remarkable behavior of frequency data was first observed in the fields of games of
chance. At the early epoch, it was observed that in all current games with cards, dice, etc.
the frequency of a given result of a certain game seem to cluster in the neighbourhood of
some definite value, when the game was repeated large number of times. Origins (about
1650) and first development of mathematical theory of probability we due to the hands
of Pascal, Fermat, Huygens, and Jacob Bernoulli. The same type of regularity was found
later to occur with various demographic data (Laplace, Galton, Maltus), and the theory
of population statistics was based on this fact (Bernstein. Pearson, Fisher, Kramer, and
many others). The long-run stability of frequency ratios is a general characteristic of
random experiments performed under uniform conditions.

The idea of an infinite parent population (in statistics) is a mathematical fiction
(abstraction) of the same kind as the idea that a given experiment may be repeated
an infinite number of times (as in these infinite Bernoulli trials). Similar is the idea of
sampling from an infinite population. And even though, in modeling one should accept
this idea and make the necessary assumptions in order to get some reasonable model
to describe the uncertainty even in a single item, in an unique uncertain process. We
think like having infinitely many copies of the uncertain situation, and one of it may
occur. Whenever we base a result on this assumption, we will refer to it as on The

Infinite Population Presumption, (briefly TIPP). Notice, that some new areas in the
science such as Utility Theory, Decision Making, Games Theory, and others, are based
almost completely on TIPP.

2. Classical development. With any sequence of BT the following r.v.’s and
probability distributions are usually associated (any textbook on probability should have
it):

2.1. Counting variables. The Geometric Distribution. This is the number
ν = min{n; X1 + · · · + Xn = 1}, where the first success occurs. It is well known that

P (ν = k) = pqk−1, with q = 1 − p k = 1, 2, . . . ,

and p is called the parameter of the Geometric distribution. Notation ν ∼ Ge(p). This
variable is useful to describe counts of trials until a first success occurs, and is a frequently
used component of numerous models of random processes of mixed discrete/continuous
type.

The Negative Binomial Distribution. This is the number νr = min{n; X1 +
· · · + Xn = r}, where the first r successes occur, and r is a positive integer. It is well
known that

P (νr = r + k) =

(−r

k

)

pr(−q)k, with q = 1 − p k = 0, 1, 2, . . . ,

and (r, p) are called then parameters of the Negative Binomial distribution. Notation
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νr ∼ NB(r, p). These variables are used to describe the waiting time until some fixed
number of events will occur. Also component of more complex models, e.g. in reliability,
demographic models, insurance. Notice that NB(1, p) = Ge(p).

The Binomial Distribution. This is the distribution of the r.v. Sn given by
equation(1). It is well known that

P (Sn = k) =

(

n

k

)

pkqn−k, with q = 1 − p k = 0, 1, . . . n,

and the pair (n, p) is called the parameter of the Binomial distribution. Notation Sn ∼
Bin(n, p). One of the most used in statistical modeling (e.g. in the study of ordered
statistics), in reliability (e.g. k-out-of-n systems), in insurance and risk models (e.g.
number of claims within a portfolio of uniform subscribers), and many other situations.

A remarkable relationship. The waiting times νr until the occurrence of the
r−th success, and the number of successes Sn within the first n BT are related by the
equations

(2) P (Sn ≥ r) = P (νr ≤ n), for any n ≥ r,

which have a nice and obvious interpretations in terms of events. It also allows to obtain
some limit approximations from either of the two random variables (e.g. Poisson, or
normal approximations for the binomial distributions may be successfully used and for
the negative binomial distribution).

2.2. Generalizations based on relaxing conditions on BT. First generaliza-
tions come from relaxing one, or more of the three conditions which specify the Bernoulli
trials. Some of these are less known.

Poisson models: If one drops the second requirement for same probability of suc-
cess in each trial, and allows, say, P (Xi = 1) = pi for i = 1, 2, . . . , then one arrives
to first generalizations of the Bernoulli sequence of trials called Poisson trials. All the
above introduced r.v.’s stay defined as before, and their distributions now will carry an at-
tachment ”Poisson”. Hence, we get Geometric-Poisson, Binomial-Poisson, and Negative
Binomial-Poisson distributions. We skip details. Just notice that the Poisson schemes
appear as a convenient tools to model dynamic situations where the subscript i is inter-
preted as a time unit, or where the conditions of experiment change with the number
of already completed trials (e.g. sampling from finite populations, or changing the urn
in sequence of sampling, or doing experiments within different seasons, or at different
places).
Dependent trials: Another kind of generalizations is obtained after dropping the re-
quirement for independent trials in the Bernoulli sequence. Possible dependence between
n−th and (n + 1)−st trials may be described as a Markov chain by the requirements

(3)
P (Xn+1 = 0|Xn = 0) = p00; P (Xn+1 = 1|Xn = 0) = p01, p00 + p01 = 1
P (Xn+1 = 0|Xn = 1) = p10; P (Xn+1 = 1|Xn = 1) = p11, p10 + p11 = 1.

An initial distribution P (X0 = 0) = 1 − α, and P (X0 = 1) = α should be assumed.
The dependent Bernoulli trials are then modeled with a special choice of the transition
probabilities Pij , i, j = 0, 1 which satisfy that the unconditional probabilities are

(4) P (Xn = 0) = 1 − p, and P (Xn = 1) = p, i = 0, 1, 2, . . . ,

and {Xn}∞n=0 are still the r.v.’s reflecting the outcomes S, or F in the n−th trial.
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These models are useful in studies related to molecular biology, reliability, online quality
control. However, there is some complexity in understanding this Markov chain (MC)
approach, and it can be overcome by an alternative approach, which we call Correlated

Bernoulli trials, briefly (CBT).

In the CBT the correlated structure between the trials is expressed by the requirement

(5) Corr(Xn , Xn+1) = ρ, ρ ∈ [−1, 1], n = 0, 1, 2, . . . ,

where the quantity ρ describes possible dependence between two adjacent trials. It can be
easily shown that the correlated sequence {Xn}∞n=0 forms a Markov chain with transition
probability matrix

(6) P =

[

q + ρp p(1 − ρ)
q(1 − ρ) p + ρq

]

.

A comparison between (3), (4), and (6) will show that the CBT and the Markovian
model at the beginning are equivalent forms of presenting dependent BT. Independent
BT are presented by the value ρ = 0. In case of CBT the dependence is vanishing with
the distance between trials. It is true that

Corr(Xn+m , Xm) = ρn, n = 1, 2, . . . ,

for any fixed m. As a matter of fact, Edwards (1960) uses this MC approach to study the
number Sn of boys in a family of n children, assuming a positive correlation ρ between
the gender of two consecutively born babes. He found that the p.g.f. of Sn is given by
the equation

(7) GSn
(z) = E(ZSn) − [pz, q]

[

(p + ρq)z q(1 − ρ)
p(1 − ρ)z q + ρp

]n−1 [

1
1

]

.

The random variables ν, Sn, and νr associated before with the BT and the Ge(p),
Bin(n, p), and NB(r, p) distributions are now defined in the same way as in Subsection
2.1, and carry the prefix correlated distributions. Now they have an additional parameter,
and this is ρ. In this way we get:

Correlated Geometric distribution ν ∼ CGe(p; ρ): It is presented by the
probability generating function (p.g.f.)

(8) P (z) = E(νz) = p
1 − ρz

1 − (q + ρp)z
, |z| ≤ 1.

Correlated Negative Binomial distribution νr ∼ CNB(r, p; ρ): It is presented
by the p.g.f. which is the rth power of the m.g.f. of the CGe(ρ, p) given in (8). We don’t
write it explicitly. Notice that from the p.g.f. one can get all the interesting average
characteristics of the respective r.v. as values of its derivatives at z = 1, and use them
purposely. The p.g.f.’s are also used to study the limit behavior of the respective r.v.’s
when one, or more parameters tend to some limiting values (the weak convergence).

Correlated Binomial distribution Sn ∼ CBin(n, p, ρ): It is presented by the
p.g.f.

(9) PCSn
(z) = E(zSn) = (1 − ρ)(1 − p + pz)n + ρ(1 − p + pzn), |z| ≤ 1.

Notice, that when ρ = 0 the above p.g.f. turns into the p.d.f. of the usual Bin(n, p). This
result is a starting point to introduce a series of correlated versions of classic continuous
distributions (see subsection 2.5).
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Remark. Correlated binomial distribution with parameters n, p and ρ is intro-
duced implicitly by Tallis (1962), and rediscovered and studied later by Luceño (1995),
and Luceño and Caballos (1995). It is due to Kolev (1999) to notice that correlated
distributions coincide with the so called zero inflated discrete distributions of the same
type.

A discrete distribution which is modified by increasing the probability for one value
(say, it is X = k0) and the remaining probabilities being multiplied by an approximate
constant to keep the sum of probabilities equal to 1, is called inflated distribution. By
denoting X̃ the “inflated” original variable X , this modification is expressed by the
relations

P (X̃ = k0) = 1 − α + αP (X = k0); P (X̃ = k) = αP (X = k), k 6= k0.

In most applications X has as a support the non-negative numbers, and k0 = 0. Then
the inflated X̃ has support “with added zeros”, and E(X̃r) = αE(Xr). If α > 1, we
have “deflated distribution”. The greatest possible value for α is 1/[1 − P (X = k0)].
Kolev (1999) noticed that the correlated distributions mentioned here are the same as
the zero inflated distributions with α = 1 − ρ. Thus, when ρ > 0 the correlated r.v’s
behave as inflated, and when ρ < 1 then they behave like deflated variables. Zero
inflated distributions are appropriate alternatives for modeling clustered samples. For
example, X̃ is suitable for modeling the distribution of samples drown from populations,
which consists of two subpopulations, one containing mostly zeros, while in the other,
any integer value may be observed.

2.3. Combined Bernoulli trials. Runs and related distributions. In a
sequence of BT a new success can be defined as a series of certain results in k consecutive
trials, called run of k outcomes. Usually series of consecutive successes, or failures of
given length are considered. As soon as such a sequence is obtained, it is said that the
respective quota of successes (or failures) is attained. However, the interests of genetic
engineering may require other runs, not studied yet. Studies started less than 20 years
ago and quickly attract attention (Johnson et al. 1992). Let ν(k) be the number of trials
when the first run of k successes is completed. Then the distribution of the r.v. ν(k) is
called Geometric distribution of order k. It is determined by the p.g.f.

(10) Gν(k)(z) =
pkzk(1 − pz)

1 − z + qpkzk+1
.

This is Philippou et al. (1983) geometric distribution of order k. The case of k = 1 gives
the ordinary Ge(p).

The waiting time of r successes runs of length k has a Negative Binomial distri-
bution of order k. This is a r−fold convolution of geometric distribution of order k,
and its p.g.f. is the rth power of Gν(k)(z) from (10).

The number of occurrences of k consecutive successes in n independent BT has Bino-
mial distribution of order k. This distribution is important in the theory of k−out-
of−n reliability systems. It has been studied by Hirano et al. (1991). The respective r.v.
X−distribution is given by the equations

P (X = m) = pn
k−1
∑

i=0

∑

i1,...,ik,m

(

i1 + · · · + ik + m

i1, . . . , ik, m

) (

q

p

)i1+···+ik

,
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where the summation is on all non-negative integers i1, . . . , ik which satisfy the relations

i1 + 2i2 + · · · + kik = n + i − mk, and

(

n

i1, . . . , ik

)

=
n!

i1! . . . ik!
.

Since Philippou many authors contributed to the theory of distributions of order
k. Aki (1985) considered the first occurrence of a series of k successes in dependent
(similar to correlated) BT which form a MC. Balasubramanian et al. (1993) analyze,
say, the waiting times when either k consecutive successes, or l consecutive failures will
be completed, or times when both will be completed, in a sequence of dependent BT (i.e.
on a two-state MC). In two papers Kolev and Minkova (1999) generalize this study to
an arbitrary MC, with a specially defined states of success, and failures. A good view on
the related problems and possible applications can be found in Fu and Kuotras (1996).
Kolev illustrates applications of distributions of order k in a Technical Report (1999).

Our opinion is that here are lots of opportunities for other, clear mathematical studies
on number of occurrences of a well defined sequence of symbols within a given number
of trials, on competing sequences (who will occur first, who later), in the frame of in-
dependent, or dependent BT, and other generalizations of discrete distributions, say, of
mixed order (k, l), etc. will appear. Their application in the studies of genetic biology
seem obvious.

2.4. More than one type of success. Multinomial distributions. Here
we just notice that the BT have a natural extension to a case where more than two
types of outcomes in a single trial may occur (compare the outcomes in tossing a coin,
and rolling a die). Let ω1, . . . , ωm be the outcomes in a single trial, and p1, . . . , pm be
their probabilities respectively. If denote by X1, . . . , Xm the number of occurrences of
these outcomes in n consecutive trials, then the joint distribution of X1, . . . , Xm. This
is the well known Multinomial distribution, whose particular case for m = 2 is the
Binomial distribution. Models of dependent trials, at the best of our knowledge, are note
well explored, neither the distributions of fixed portions of outcomes. However, such
models also may be important for molecular biology and genetic engineering.

2.5. Limit theorems and related distributions. It is well known that when the
parameters of a distribution go close to their boundary values, the respective r.v. starts
behave strange (e.g. when p → 1, R then ν → ∞ in the Ge(p) model), and practice
better use approximations than the original distributions. Here we mention three classical
approximations which make a bridge between distributions, and also illustrate how new
classes of distributions have been introduced. Mathematically all of these facts mean
convergence in distribution, and can be analytically proven by showing that the p.g.f. of
the right-hand side goes, under the required conditions, to the p.g.f. of the left-hand side
(an application of the continuity theorem and the integral transforms of functions).

The Exponential distribution Exp(λ) as a limit of Ge(p). It is known that

(11) lim
p→0

P

(

ν

E(ν)
≤ x

)

= 1 − e−x, x ≥ 0.

In words it means that the r.v. ν asymptotically behaves as an Exp(λ = 1/p) distributed
r.v. when p approaches 0. Such fact is symbolically indicated as

(12) Ge(p) ≈ Exp(1/p) as p → 0,

and is used to approximate the respective probabilities when direct calculations are com-
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plicated.

The Correlated Exponential distribution CExp(λ; ρ) is obtained in the same
way as Exp(1) in (11), and the fact is

CGe(p) ≈ CExp(1/p; ρ) as p → 0,

where CExp(λ; ρ) is defined by the p.d.f. fCExp(λ, ρ; x) = 1 − ρ + ρ e−λx.
The Poisson distribution Po(λ) can be obtained as an approximation

(13) Bin(n, p) ≈ Po(λ = np) as n → ∞, p → 0 and np → λ.

Following the same classical way Luceño (1995) derived the Correlated Poisson dis-
tribution CPo(λ; ρ) from correlated negative binomial distribution, whose p.g.f. is
PCPo(t) = ρ + (1 − ρ)eλ(t−1).

Analogously, following the way of deriving The Normal approximation N(µ =
np, σ =

√
npq) ≈ Bin(n, p) as n → ∞, pq 6= 0 to the Binomial distribution from

lim
n→∞

P

(

Sn − np√
npq

≤ x

)

=
1√
2π

∫ x

−∞

e−u2/2 du, one can introduce the Correlated Nor-

mal distribution as a respective approximation to the CBin(n, p; ρ) from (7).
Other similar generalizations with a starting point from distributions of order k, or

from multinomial correlated distributions are also possible. We anticipate lots of joy for
whom find the proofs, and respective explicit forms of such approximations.

3. Trials extended in time. Environmental and risk modeling. Now
let us suppose that it takes some considerable time to perform any particular trial in
the Bernoulli sequence. It is clear that the trial ends with no success only when it is
completed. However, if there is a success it is immediately discovered. For instance,
consider the car accident of a driver: just by the end of the year it is made clear if no
accident happened, and an accident is immediately registered. Let each trial requires
some fixed time c > 0, and let Yi be the elapsed time from the beginning of the trial up
to the moment when S occurs, presumably it occurs within this trial. Let X be the total
time elapsed from the start of a sequence of BT until S occurs. Then we should name
the distribution of the r.v. X Extended in time Geometric distribution Briefly
ETCe(p, Y, c). If assume the sequence {Yi}∞i=1 independent, identically distributed, then
X has a continuous distribution when Yi are continuous on [0, c]. Dimitrov and Khalil
(1992) found the form of this distribution

(14) FX(x) = 1 − p[ x
c
]
{

1 − (1 − p)FY

(

x −
[x

c

]

c
)}

, x ≥ 0,

where FY (y) is the distribution of Yi’s, and [x
c ] is the integer part of the number x/c.

They also discuss the use of such distributions in modeling environmental processes with
periodic behavior. And here is the key to this modeling: environmental processes are
embedded into conditions that are periodically repeated, due to the seasonal character
of our surrounding (refer to the above example with the car accidents). Most of the
events in insurance business have this subordination with the environmental conditions,
which act as conditions of a slowed down BT, and are periodically repeated. Here we
see the main stream of applications of these distributions and models, besides of the
truly mathematical and probabilistic problems and solutions. Dimitrov (1998) notice
also possible applications in technical studies.

Dimitrov and Chukova (1992) discovered the Almost-lack-of-memory property in ran-
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dom variables with the distribution (14) in relation with the blocking time in service
on non-reliable server, and called it ALM(p, FY , c) distribution, because of the ALM
property. Later Dimitrov et al. (1997) fully analyzed the properties of the ALM distri-
butions by using the idea of Kotz and Shanbhag (1980) of use of failure rates as more
natural physical characteristic in describing probability behavior of r.v.’s. It has been
found that the ALM -, or ETGe-distributions have a periodic failure rate. This perfectly
matches the above mentioned concept of TIPP for BT embedded in periodic random
environment, and pays of in environmental, risk, and insurance modeling.

Chukova et al. (1993), and Dimitrov et al. (2000) discuss the use of multiple su-
perposition of r.v.’s with distribution of X on the interval axis, and found the number
of successes Nt,t+s) on any time interval [t, t + s) to have a Poisson distribution with
periodic intensity λ(t) = fX(t)/[1 − FX(t)], where FX(x) is defined by (14). This fact
let them to find the representation

N[t,t+s) = M1 + · · · + M[ s
c
] + Ns−[ s

c
]c,

where {Mn}n≥1 are i.i.d. Poisson r.v.’s of parameter p =
∫ c

0 λX(t) dt, and are indepen-
dent with the last component of the above sum. The result works in the studies of risk
processes where the accumulated losses within an interval [t, t + s) are presented by the
sum C1 + · · · + CN[t,t+s)

called compound process. We do not go into details, just notice
that same results help to improve some known evaluations of probability of ruin in risk
analysis, where compound processes are key component (ref. Bowers et al. 1986, Gerber
1979).

By the best of our knowledge, nothing has been done to establish any analog of either
the Extended in time Negative Binomial distribution )briefly ETNB(r, p, Y, c)),
or the Extended in time Binomial distribution (ETBin(p, Y, c)). No models alike
the order k distributions are studied. Very few results for approximations of the ALM
distributions. Even the classic Bernoulli low of large numbers should look differently
because of dependence on time parameter. Notice that such models may be difficult
because of dependence of the intensity of successes on the time of occurrence. However,
the Extended in time Poisson trials (ETPT ) found a good development and area of
applications. Dimitrov and Chukova (1999) constructed a model of ETPT , and found
the form of the distribution of the time X to first occurrence of success:

FX(x) =

k
∑

j=1

pj

j−1
∏

i=1

(1 − pi) +

{

pk+1

k
∏

i=1

(1 − pi)

}

FYk+1

(

x −
[x

c

]

c
)

,

and in case of all pi = p this result coincides with (14). An application to tornado-watch

modeling illustrates the particular case of periodic sequence of probabilities for success
{pi}i=1 which describes so called driving periodic conditions. Similar approach has been
demonstrated earlier in Dimitrov et al. (1998) to model a dynamic population growth
in periodic environment, where the multiplicative almost-lack-of-memory in consecutive
trials is introduced. The last concept is not well explored yet, and has no analogous in
the classical schemes listed above.

Extended in time correlated BTs are on the way of exploration. A need of such
type of models is obvious. There is an intuitively clear correlation between types of
the seasons in the environmental surrounding (warm-warm, severe-severe, dry-wet, etc.).
This means that extended in time BT should be considered correlated. The specific
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noticed in Section 2.2 remains, and new components appear. These are the times of
performing trials of different kind. Obtained results give us a hope to report them soon.
The study is still in progress.

4. Conclusions. Here we selected a specific development of an idea by abandoning
original conditions, or by exploring it in deep with more focus and details. Any time we
discover that as a result new mathematical objects appear (random variables, processes,
probability distributions, properties) and then live their separate life as objects of further
study, or subject to applications. In this way we notice some fields of hot studies, and
blanc spots for exploration, all related to the oldest components on which the probability
theory is build.
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БЕРНУЛЕВИ ОПИТИ. РАЗШИРЕНИЯ, ПОРОДЕНИ ВЕРОЯТНОСТНИ

РАЗПРЕДЕЛЕНИЯ И МОЩ НА МОДЕЛИРАНЕ

Боян Димитров, Николай Колев

В статията е следван модела на постоянно еволюираща схема на класическата

поредица от Бернулеви опити. Накратко са отбелязани свързани с тях случайни

величини, вероятностни разпределения, процеси, модели, резултати и гранични

теореми. Представени са селективно техните области на приложение. Главната

цел на тази работа са пътищата на развитие и обобщение, някои нови идеи и

приложения.

24


