ON THE MEASURABILITY OF SETS OF SPHERES IN THE SIMPLY ISOTROPIC SPACE*

Adriyan Varbanov Borisov, Margarita Georgieva Spirova

The measurable sets of spheres and the corresponding invariant densities with respect to the group of the general similitudes and some its subgroups are described.

1. Introduction. The simply isotropic space $I_{3}{ }^{(1)}$ is defined (see [5], [7], [8]) as a projective space $\mathbb{P}_{3}(\mathbb{R})$ in which the absolute consists of a plane ω and two complex conjugate straight lines f_{1}, f_{2} into ω with a real intersection point F . All regular projectivities transforming the absolute figure into itself form the 8-parametric group G_{8} of the general simply isotropic similitudes. Passing on to affine coordinates (x, y, z) we have for G_{8} the representation [5; p. 3]

$$
\begin{align*}
\bar{x} & =a+p(x \cos \varphi-y \sin \varphi) \\
\bar{y} & =b+p(x \sin \varphi+y \cos \varphi), \tag{1}\\
\bar{z} & =c+c_{1} x+c_{2} y+c_{3} z
\end{align*}
$$

where $p>0, \varphi, a, b, c, c_{1}, c_{2}$ and $c_{3} \neq 0$ are real parameters.
The d-distance between two nonparallel points and the s-distance between two parallel points in $I_{3}{ }^{(1)}$ are relative invariants of the group G_{8}. We shall consider with G_{8} and some its subgroups:
(i) $p=1$ - the subgroup $B_{7} \subset G_{8}$ of the simply isotropic similitudes of the d-distance [5; p. 5].
(ii) $c_{3}=1-$ the subgroup $S_{7} \subset G_{8}$ of the simply isotropic similitudes of the s-distance [5; p. 6].
(iii) $c_{3}=p-$ the subgroup $W_{7} \subset G_{8}$ of the simply isotropic angulur similitudes [5; p. 16].
(iv) $\varphi=0$ - the subgroup $G_{7} \subset G_{8}$ of the boundary simply isotropic similitudes [5; p. 8].
(v) $G_{6}=G_{7} \cap W_{7}$ - the subgroup of the volume preserving boundary simply isotropic similitudes [5; p. 8].
(vi) $B_{6}=B_{7} \cap G_{7}$ - the subgroup of the modular boundary motions [5; p. 9].
(vii) $B_{6}{ }^{(1)}=B_{7} \cap S_{7}$ - the subgroup of the simply isotropic motions [5; p. 7].
(viii) $p=1, \varphi=0, c_{3}=1$ - the subgroup B_{5} of the unimodular boundary motions [5; p. 9].

[^0]We study the measurability in the sense of M. I. Stoka [6], G. I. Drinfel'd and A. V. Lucenko [2]-[4] of sets of spheres with respect to G_{8} and indicated above subgroups.
2. Measurability with respect to $\boldsymbol{G}_{\mathbf{8}}$. Let be given in the space $I_{3}{ }^{(1)}$ a quadric \sum whose equation has the form

$$
\begin{equation*}
x^{2}+y^{2}+2 \alpha x+2 \beta y+2 \gamma z+\delta=0 \tag{2}
\end{equation*}
$$

where α, β, γ and δ are real parameters. We note [5; p.67] that depending on $\gamma \neq 0$ or $\gamma=0$ the quadric \sum is a sphere of parabolic type or a sphere of cylindrical type, respectively. Under the action of (1) the quadric $\sum(\alpha, \beta, \gamma, \delta)$ is transformed into the quadric $\bar{\sum}(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta})$ as

$$
\begin{align*}
\bar{\alpha}= & -a+p c_{3}{ }^{-1}\left[\left(\alpha c_{3}-\gamma c_{1}\right) \cos \varphi-\left(\beta c_{3}-\gamma c_{2}\right) \sin \varphi\right] \\
\bar{\beta}= & -b+p c_{3}{ }^{-1}\left[\left(\alpha c_{3}-\gamma c_{1}\right) \sin \varphi+\left(\beta c_{3}-\gamma c_{2}\right) \cos \varphi\right] \\
\bar{\gamma}= & p^{2} c_{3}{ }^{-1} \gamma, \tag{3}\\
\bar{\delta}= & a^{2}+b^{2}+\delta p^{2}-2 p c_{3}{ }^{-1}\left\{\gamma c p+\left[\left(\alpha c_{3}-\gamma c_{1}\right) a+\left(\beta c_{3}-\gamma c_{2}\right) b\right] \cos \varphi-\right. \\
& \left.-\left[\left(\beta c_{3}-\gamma c_{2}\right) a-\left(\alpha c_{3}-\gamma c_{1}\right) b\right] \sin \varphi\right\} .
\end{align*}
$$

The transformations (3) form the so-called associated group $\overline{G_{8}}$ of $G_{8}\left[6 ;\right.$ p.34]. $\overline{G_{8}}$ is isomorphic to G_{8} and the invariant density with respect to G_{8} of the quadrics (2), if it exists, coicides with the invariant density with respect to $\overline{G_{8}}$ of the points $(\alpha, \beta, \gamma, \delta)$ in the set of parameters [6; p.33]. The infinitesimal operators of $\overline{G_{8}}$ are

$$
\begin{align*}
& Y_{1}=\frac{\partial}{\partial \alpha}+2 \alpha \frac{\partial}{\partial \delta}, \quad Y_{2}=\frac{\partial}{\partial \beta}+2 \beta \frac{\partial}{\partial \delta}, \quad Y_{3}=\gamma \frac{\partial}{\partial \delta} \\
& Y_{4}=\alpha \frac{\partial}{\partial \alpha}+\beta \frac{\partial}{\partial \beta}+2 \gamma \frac{\partial}{\partial \gamma}+2 \delta \frac{\partial}{\partial \delta}, \quad Y_{5}=\beta \frac{\partial}{\partial \alpha}-\alpha \frac{\partial}{\partial \beta} \tag{4}\\
& Y_{6}=\gamma \frac{\partial}{\partial \alpha}, \quad Y_{7}=\gamma \frac{\partial}{\partial \beta}, \quad Y_{8}=\gamma \frac{\partial}{\partial \gamma}
\end{align*}
$$

We destinguish the following cases:
Case I. $\gamma \neq 0$, i.e. \sum is a sphere of parabolic type. We can write

$$
Y_{4}=2 \frac{\delta}{\gamma} Y_{3}+\frac{\alpha}{\gamma} Y_{6}+\frac{\beta}{\gamma} Y_{7}+2 Y_{8}
$$

Since the infinitesimal operators Y_{3}, Y_{6}, Y_{7} and Y_{8} are arcwise unconnected and

$$
Y_{3}\left(2 \frac{\delta}{\gamma}\right)+Y_{6}\left(\frac{\alpha}{\gamma}\right)+Y_{7}\left(\frac{\beta}{\gamma}\right)+Y_{8}(2) \neq 0
$$

then it follows [2]-[4] that set (2) of sphere of parabolic type is not measurable under G_{8} and it has not measurable subsets.

Case II. $\quad \gamma=0$, i.e. \sum is a sphere of cylindrical type. Now the infinitesimal operators has the form

$$
\begin{aligned}
& Y_{1}=\frac{\partial}{\partial \alpha}+2 \alpha \frac{\partial}{\partial \delta}, Y_{2}=\frac{\partial}{\partial \beta}+2 \beta \frac{\partial}{\partial \delta}, Y_{3}=0, Y_{4}=\alpha \frac{\partial}{\partial \alpha}+\beta \frac{\partial}{\partial \beta}+2 \delta \frac{\partial}{\partial \delta} \\
& Y_{5}=\beta \frac{\partial}{\partial \alpha}-\alpha \frac{\partial}{\partial \beta}, Y_{6}=0, Y_{7}=0, Y_{8}=0
\end{aligned}
$$

Obviously Y_{1}, Y_{2} and Y_{4} are arcwise unconnected and $Y_{5}=\beta Y_{1}-\alpha Y_{2}$. But $Y_{1}(\beta)-$ 84
$Y_{2}(\alpha)=0$ and the corresponding associated group $\overline{G_{8}}$ is measurable and the integral invariant function $f=f(\alpha, \beta, \delta)$ satisfies the system of R. Deltheil [1; p.28], [6; p.11] $Y_{1}(f)=0, Y_{2}(f)=0, Y_{4}(f)+4 f=0$. The system has the solution

$$
f=c\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2}
$$

where $c=$ const.
We summarize the foregoing results in
Theorem 1. (i) The set of spheres of parabolic type is not measurable under G_{8} and it has not measurable subsets.
(ii) The set of spheres of cylindrical type

$$
\begin{equation*}
\Sigma: x^{2}+y^{2}+2 \alpha x+2 \beta y+\delta=0 \tag{5}
\end{equation*}
$$

is measurable with respect to the group G_{8} and has the invariant density

$$
\begin{equation*}
d \Sigma=\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2} d \alpha \wedge d \beta \wedge d \delta \tag{6}
\end{equation*}
$$

Remark 1. If we denote by $r=\sqrt{\alpha^{2}+\beta^{2}-\delta}$ the radius of the sphere of cylindrical type (5) and by $Q\left(x_{0}=-\alpha, y_{0}=-\beta, 0\right)$ the center of the Euclidean circle

$$
k: x^{2}+y^{2}+2 \alpha x+2 \beta y+\delta=0, z=0
$$

into the coordinate plane $O x y$, then the density (6) can be written in the form

$$
d \Sigma=2 r^{-3} d Q \wedge d r
$$

where $d Q=d x_{0} \wedge d y_{0}$ is the Euclidean density of the points in the plane Oxy.
3. Measurability with respect to the subgroups of G_{8}. The associated group $\overline{B_{7}}$ of the group B_{7} has the infinitesimal operators $Y_{1}, Y_{2}, Y_{3}, Y_{5}, Y_{6}, Y_{7}$ and Y_{8} in (4).

Case I. $\quad \gamma \neq 0$. Now

$$
Y_{1}=2 \frac{\alpha}{\gamma} Y_{3}+\frac{1}{\gamma} Y_{6}, Y_{2}=2 \frac{\beta}{\gamma} Y_{3}+\frac{1}{\gamma} Y_{7}, Y_{5}=2 \frac{\beta}{\gamma} Y_{6}-\frac{\alpha}{\gamma} Y_{7},
$$

where Y_{3}, Y_{6}, Y_{7} and Y_{8} are arcwise unconnected. It is easy to verify that the integral invariant function $f=f(\alpha, \beta, \gamma, \delta)$ satisfies the system of R . Deltheil

$$
Y_{3}(f)=0, Y_{6}(f)=0, Y_{7}(f)=0, Y_{8}(f)+f=0
$$

and therefore $f=c \gamma^{-1}$, where $c=$ const.
Case II. $\quad \gamma=0$. Now

$$
Y_{3}=0, Y_{6}=0, Y_{7}=0, Y_{8}=0, Y_{5}=\beta Y_{1}-\alpha Y_{2}
$$

and consequently the group $\overline{B_{7}}$ acts intransitively on the set (5), i.e. the set (5) is not measurable with respect to the group B_{7}. From $Y_{1}(\beta)+Y_{2}(-\alpha)=0$ and $Y_{1}(f)=0$, $Y_{2}(f)=0$ we deduce that the set (6) has the measurable subset

$$
\alpha^{2}+\beta^{2}-\delta=h, h=\text { const } .
$$

Thus we have the following
Theorem 2. (i) The set of spheres of parabolic type (2) is measurable with respect to the group B_{7} and has the invariant density

$$
\begin{equation*}
d \Sigma=|\gamma|^{-1} d \alpha \wedge d \beta \wedge d \gamma \wedge d \delta \tag{7}
\end{equation*}
$$

(ii) The set of the spheres of cylindrical type (5) is not measurable with respect to the group B_{7}. It has the measurable subset

$$
\alpha^{2}+\beta^{2}-\delta=h, h=\mathrm{const}
$$

with the invariant density $d \Sigma=d \alpha \wedge d \beta$.
Remark 2. Let us denote by $R=-\frac{1}{2 \gamma}$ and by

$$
Q\left(x_{0}=-\alpha, y_{0}=-\beta, z_{0}=\frac{\alpha^{2}+\beta^{2}-\delta}{2 \gamma}\right)
$$

the radius and the vertex of the sphere of parabolic type (2), respectively. Then the formula (7) becomes

$$
d \Sigma=R^{-2} d R \wedge d Q
$$

where $d Q=d x_{0} \wedge d y_{0} \wedge d z_{0}$ is the invariant density of the points in $I_{3}{ }^{(1)}$ under the group $B_{6}{ }^{(1)}$.

By arguments similar to the ones used above we examine the measurability of the set of spheres (2) with respect to all the rest groups. We collect the results in the following table:

group	parabolic type	cylindrical type
S_{7}	$d \Sigma=\gamma^{-6} d \alpha \wedge d \beta \wedge d \gamma \wedge d \delta$	$d \Sigma=\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2} d \alpha \wedge d \beta \wedge d \delta$
W_{7}	is not measurable and has not measurable subsets	$d \Sigma=\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2} d \alpha \wedge d \beta \wedge d \delta$
G_{7}	is not measurable and has not measurable subsets	$d \Sigma=\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2} d \alpha \wedge d \beta \wedge d \delta$
G_{6}	$d \Sigma=\|\gamma\|^{-\frac{7}{3}} d \alpha \wedge d \beta \wedge d \gamma \wedge d \delta$	$d \Sigma=\left(\alpha^{2}+\beta^{2}-\delta\right)^{-2} d \alpha \wedge d \beta \wedge d \delta$
B_{6}	$d \Sigma=\|\gamma\|^{-1} d \alpha \wedge d \beta \wedge d \gamma \wedge d \delta$	it is not measurable, but has the measurable subset $\alpha^{2}+\beta^{2}-\delta=h$ ($h=$ const) with $d \Sigma=d \alpha \wedge d \beta$
$B_{6}{ }^{(1)}$	it is not measurable, but has the measurable subset $\gamma=h$ ($h=$ const) with $d \Sigma=d \alpha \wedge d \beta \wedge d \delta$	it is not measurable, but has the measurable subset $\alpha^{2}+\beta^{2}-\delta=h$ ($h=$ const) with $d \Sigma=d \alpha \wedge d \beta$
B_{5}	it is not measurable, but has the measurable subset $\gamma=h$ ($h=$ const) with $d \Sigma=d \alpha \wedge d \beta \wedge d \gamma$	it is not measurable, but has the measurable subset $\alpha^{2}+\beta^{2}-\delta=h$ ($h=$ const) with $d \Sigma=d \alpha \wedge d \beta$

REFERENCES

[1] R.Deltheil. Probabilité Géométriques. Paris, Gauthier-Villars, 1926.
[2] G. I. Drinfel'd. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., 21 (1949), 47-57 (in Russian).
[3] G. I. Drinfel'd, A. V. Lucenko. On the measure of sets of geometric elements. Vest. Kharkov. Univ. 31 (1964), no. 3, 34-41 (in Russian).
[4] A. V. Lucenko. On the measure of sets of geometric elements and their subsets. Ukrain. Geom. Sb., 1 (1965), 39-57 (in Russian).
[5] H. Sachs. Isotrope Geometrie des Raumes. Braunschweig/ Wiesbaden, Friedr. Vieweg and Sohn, 1990.
[6] M. I. Stoka. Geometrie Integrala. Bucuresti, Ed. Acad. RPR, 1967.
[7] K. Strubecker. Differentialgeometrie des isotropen Raumes I. Sitzungsber. Ősterr. Akad. Wiss. Wien 150 (1941), 1-53.
[8] K. Strubecker. Differentialgeometrie des isotropen Raumes II, III, IV, V. Math. Z. 47 (1942), 743-777; 48 (1942), 369-427; 50 (1944), 1-92; 52 (1949), 525-573.

Adriyan Varbanov Borisov
Dept. of Descriptive Geometry
Univ. of Architecture
Civil Eng. and Geodesy
1, Christo Smirnenski Blvd.
1421 Sofia, Bulgaria
e-mail: adribor_fgs@uacg.acad.bg

Margarita Georgieva Spirova
Fac. of Math. and Informatics Shumen University
"Episkop Konstantin Preslavski"
115, Alen Mak Str.
9712 Shumen, Bulgaria
e-mail:margspr@fmi.shu-bg.net

ВЪРХУ ИЗМЕРИМОСТТА НА МНОЖЕСТВА ОТ СФЕРИ В ПРОСТО ИЗОТРОПНО ПРОСТРАНСТВО

Адриян В. Борисов, Маргарита Г. Спирова

Описани са измеримите множества от сфери и са намерени съответните им инвариантни гъстоти относно групата на общите подобности и някои нейни подгрупи.

[^0]: *AMS subject classification: 53C65. This work was partially supported by Shumen University Research Found under 13/04.06.01.

