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The study of Diophantine figures in the plane (see [1-4]) involves different geomet-
ric and number-theoretic notions. This paper gives a survey without proofs on the
obtained up to now results. Some new results and problems are included.

Gauss integers.

General properties, unities, associate element. It is well known that the ring
Z[i] is an Euclidean domain with respect to the norm N(n + im) = n? + m?2. The norm
is a function of the type Z[i] — N, such that for every two elements a and b in Z[i], with
b different from zero, there are two elements ¢ and d in Z[i] for which a = ¢b+ d and in
the case d # 0 we have N(d) < N(b).

An element a + b is an unit in Z[i] if there is « + iy € Z[i] such that (a + ib)(z + iy)
=1,1=1+44.0. It is not difficult to see that there are only four units in Z[i], namely
1, —1,4, —i. We say that § € Z[i] is an associate element of a € Z[i] if § = e, where &
is an unit in Z[{]. Clearly if § is an associate to «, then « is an associate to 3. Every
a € Z[i] has four associate elements 1.«, (—1).«, i.cr, (—i).cv.

Parity in Z[i]: Even and odd gauss integers.

Definition. We say that the Gauss integers n +im, n,m € Z, is an even integer in
Z[i] if n and m are of the same parity in Z. If n and m are of different parity in Z, we
say that n + im is an odd Gauss integer in Z][i].

Proposition 1. If the Gauss integer n+ im is even in Z[i] there is p+iq € Z[i] such
that n+im = 2(p+1iq) or n+im =2(p+iq) + 1+ 4. Respectively, if n + im is odd in
Z[i] there is v +1is such that n+im = 2(r+is)+ 1 orn+im = 2(r +is) +i

Proposition 2. The Gauss integer n+im is even in Z[i] iff n+im = 0 (mod (1+1)),
respectively n + im is odd in Z[i] iff n+im =1 (mod (1 +1)).

Proposition 3. The Gauss integer n + im is even in Z[i] iff the norm N(n +im) =
n? +m? is even in Z. Respectively, n+ im is odd in Z[i] iff the norm N(n + im) is odd
n Z.

It is not difficult to prove that the above three propositions are equivalent.

Arithmetic properties of gauss integers. It is easy to prove (with the help of
the above stated propositions) that: the sum of Gauss integers of common parity is
even, and the sum of Gauss integers of different parity is odd, the product of Gauss
integers satisfy the same rules as in Z, (even) x (even) = (even), (odd) x (odd) = (odd),
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(even) x (odd) = (even). The square of an even Gauss integer is an even Gauss integer,
respectively the square of an odd Gauss integer is an odd Gauss integer. More precisely,
if a is even in Z[i], then o = (1+1i)%ag = 4a;. If B is odd in Z[i], then 82 = (1+i)262+ 1
=406, + 1.

Square radical of a Gauss integer (S. Dimiev): Let & = m 4 im be a Gauss integer
with m # 0. We consider the equation 22 = a with z € C. Each solution of this equation
is called square radical of . In the case that there is I € N such that (n,m,l) to be a
Pythagorean triple in Z, i.e. n? +m? =2, we have

[n+i t+i2
n—;zm: 2t7 t2=n+l

Proof and some discussions are given by P. Guncheva [10].

Indecomposable gauss integers.

Definition ([6]). An element o of Z[i] is called indecomposable Gauss integer or
prime Gauss integer if it is impossible to present it as product of two elements A, u € 7Z][i],
both of which are not units, i.e. different from 1,—1,14, —i.

Below we shall give examples of Gauss prime integers. The norm of a Gauss integer
is sum of two squares, i.e. if @ = n + im, n,m € Z, then N(a) = n? + m2. With this
in mind we set N(a) = ¢ (mod 4), where ¢ = 0,1,2,3. It is not difficult to see that the
case t = 3 is impossible. More precisely, we have: N(a) = n? + m? # 4s+ 3, s € Z.
So, in the case N(«) is odd, it follows N(a) =4s+ 1, or N(a) = 1 (mod 4). In the next
exposition we need two well known theorems from the number theory in Z.

The first one is a theorem of Fermat (see Edwards [9]): each prime number in Z such
that p = 1 (mod 4) can be written as a sum of two squares, i.e. there exist a,b € Z such
that p = a® 4+ b%. When a,b are positive integers a is odd, b is even, the above mentioned
representation is unique. The second theorem asserts: if (z,y) = 1 then 2? + y* has at
least one prime divisor of the form 4k + 1 see for instance [7], pp. 56-102).

Now we turn to the description of the prime Gauss integers. The mentioned descrip-
tion is based on the comparison with prime integers in Z. We will see that some prime
integers in Z are decomposable in Z[i] and that all prime Gauss integers are divisors of
prime integers in Z. More precisely we have the following (suggested by [6])

Lemma 1. If a is a prime element of Z[i], then there is a prime p € Z such that
alp.

Lemma 2. If« is a Gauss integer and N(«) is a prime integer in Z, then « is prime
Gauss integer.

Based on the proved two lemmas we give examples of prime Gauss integer and decom-
posable in Z[i] prime integers in Z. These are 141 in Z[i] and 2 in Z. Indeed N(1+:) = 2
and we apply Lemma2; 2 = (—i)(1 +4)?. Lemma 1 gives (1 + )[2.

Theorem (suggested by [6]). The indecomposable elements in Z[i] are the following:

a) All prime integers in Z of the form 4k + 3 and all their associate elements in Z[il;

b) The number 1+ i and its associates;

c) If p is a prime integer in Z of the form 4k + 1 and N(a) = p, a = = + iy,
2,y € Z, i.e. p=x%+1y>, then o and a are indecomposable elements in Z[i] with all their
associates.
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d) There are no other indecomposable elements in Z[i], more precisely if N(«a) = g,
where q is not prime integer in Z, then « is indecomposable element in Z[i].

Gauss-pythagorean integers.

Definition (S. Dimiev). The Gauss integer « = x+iy, x,y € 7, is said to be a Gauss-
Pythagorean number if there exists z € Z such that the triple z,y,z be a Pythagorean
triple: x2 4+ y? = 2.

We shall denote the set of all Gauss-Pythagorean integers by GP[i], GP[i] C Z[d].
The zero element and the units of Z[i] are not Gauss-Pythagorean integers. We remark
that the sum of two Gauss-Pythagorean numbers is not Gauss-Pythagorean number in
general, but it is easy to prove that the product of two Gauss-Pythagorean numbers is
always a Gauss-Pythagorean integer. So GP[i] is a multiplicative subsemigroup of the
multiplicative group Z[i] — {0} of the ring Z[i].

The conjugate and the associate elements of a Gauss-Pythagorean element are Gauss-
Pythagorean integers too. The next Lemma is useful in the following exposition

Lemma (K. Markov). Let « = x + iy be a Gauss-Pythagorean number. Then there
exists a Gauss integer T such that N(a) = (N(7))2.

Corollary. There is no element in GP [i] which is prime Gauss integer.

Definition. An element 7 € GP[i] is said to be a prime Gauss-Pythagorean integer if
it is impossible to represent it as a product of two elements of GPJi].

Theorem. There exists an infinite number of indecomposable Gauss-Pythagorean num-
bers.

A proof of this theorem is due to K. Markov.

Primitive triples in Z[i].

Definition. We say that the triple o, 3,y of Gauss integers is a primitive triple if
the unique common divisors of the elements of the triple are the unities in Z[i).

We denote this by (a, 3,v) = 1. Like in Z we shall write (o, ) = 1, when « and
satisfy the same condition. Ordinary by (a, 3,7) it is denoted the GCD of a, 8 and 7.
Analogously

(ar, B) is the GCD of a and 3. Tt is easy to see that

(o, B,7)=(a, B),7)=(cv, (B,7))=((,7), B). If @is the complex conjugate of o we have:

(o, B)=6 iff (@ , 3)=0 in particular (o, 3)=1 iff (@, 3)=1. Analogously («, 3,v)=6 iff

(@, 3,7) = ¢ and in particular (o, 3,7) = 1 iff (@, 3,7) = 1. Clearly,

(o, B) = (o, y) = (B,7) = 1 implies («, 3,7) = 1, but the inverse is not true.

Proposition 4. (N(a),N(8),N(v)) =1 in Z implies («, 3,7v) = 1 in Z]i].

The proof is not difficult. Ezample: (3+4,2+4,8+14) =1, but (N(3 +14), N(2 4+ 1),
N(8+14)) = (10,5,65) = 5.

We remark that (3 +4,2 +¢) = 1 does not imply (N(3 +14),N(2+14)) = 1.

Pythagorean triples, primitive pythagorean triples. In a primitive Pythagorean
triple in Z[i] at least one element is odd. Let «, 3,7 be a primitive Pythagorean triple,
ie. o+ %2 =92 and (a, 3,7) = 1. There are two possibilities for « : the first one is v
to be even. In this case we have: (odd)? + (odd)? = (even)?. The second possibility is v
to be odd. So we have for instance: (even)? + (odd)? = (odd)?.
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Proposition 4 obtains for Pythagorean triples the following stronger form: Proposition
4'. (N(a),N(8),N(v)) =1 in Z is equivalent to (o, 3,7) = 1 in Z[i].

Proposition 5. Formulae for primitive Pythagorean triples:
= 2)‘/1/5 ﬁ: )‘2 _/1/27,7 = )‘2 +/j/27()‘a,u) = 17)‘5111/ €L [Z]
where X\ and p are of different parity.

For the proof we can imitate the known proof in Z having in mind the sense of the
parity in Z[i] (roughly speaking replacing 2 by 1 + i).

Proposition 6 (Fermat Last Theorem in Z[i] for n = 4). The equation z* + y* = 2*

has no Gauss integer solutions.

For the proof we propose a method of Fermat type descent with respect to the norm.
This will be exposed elsewhere [11].

Diophantine figures. We shall consider the Cartesian plane R x R (R— the field
of real numbers). A complete Cartesian graph is by definition the couple (V,S)
where V is the set of points in R x R, called vertices, and S is the set of all segments
[P.Q] with P,Q € V, P # Q. A Cartesian Erdos graph is by definition a Cartesian
graph (V,S) for which the length of each segment in S is a integer number # 0. If the
set of vertices V is infinite we shall say that (V,S) is an infinite graph.

Theorem (Erdds). The vertices of an infinite Cartesian Erdds graph are situated on
a straight line in the Cartesian plane.

Definition. The Cartesian product Z. X Z will be called Diophantine plane.

Clearly Z x Z C R x R, or the Diophantine plane is the lattice of the points in R x R
with integer coordinates. We will consider complete graphs in the Diophantine plane,
i.e. the set of couples (V,S), V C Z x Z and S is the same as above. A Diophantine
figure is by definition a complete graph in the Diophantine plane for which the length
of each of its segments is an integer number. Diophantine figures which contain at least
three different non-collinear vertices will be considered. Erdés-Diophantine figure is
by definition a maximal Diophantine figure, i.e. a Diophantine figure for which there is
not a larger one.

The existence of Erdés-Diophantine figures follows from the above cited Erdos the-
orem. Indeed, according this theorem each increasing sequence of finite non-linear Dio-
phantine figures F} C Fy C ... C F,, C ... stabilizes at some index kg € N. Then Fj, is
an Erdos-Diophantine figure.

Diophantine planimetry — examples. A closed path in a Diophantine figure F’
is defined by a sequence of vertices Py, Pi, ..., P, = Fy, P; € F, and the union of the
connecting segments. For a Diophantine triangle there is only one closed path constituted
from all vertices and all segments of the triangle.

Proposition 7. The sum of lengths of the segments of a closed path in a Diophantine
figure is an even integer.

The proof can be derived by induction from the following

Lemma (M. Brancheva). The sum of lengths of the sides of a Diophantine triangle
is always an even integer.

This Lemma is a generalization of the analogous property of Pythagorean triangles.
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Proposition 8 (M. Brancheva). Let AABX lie in the Diophantine plane and (a1, az),
(b1,b2), (x1,x2) are the coordinates of the vertices A, B, X resp. Let suppose a1 = as =
0; let the lengths of the segments of the triangle be: |AB| = ¢, |BC| = a, |AC| = b.
For given lengths a, b, c and given coordinates (b1, bs) we have the following Diophantine

equation of first degree for x1,xs : 2b1z1 + 2bsxe = b? + 2 — a2.

Remark. The above written Diophantine equation is not always solvable. Indeed, if
a solution exists, the number b? + ¢? — a? must be even, but according to Proposition
7 the same is true for the number b? + c¢? + a%. This implies the following necessary
condition: the number b? 4+ c¢? must be even. We see that the classical construction is
not always possible for Diophantine triangles.

Diophantine triangles: classification. Each Diophantine triangle can be in-
scribed in a uniquely determined rectangle with sides parallel to the coordinate axes.
This enveloping rectangle help us to find the next

Lemma (Classification lemma). There are 4 essentially different types of Diophan-
tine triangles (see the Figures below): (1) Pythagorean triangle; (2) and (3) obtained from
two Pythagorean triangles with common cathetus; (4) new kind of Diophantine triangle.

The proof is obtained by simple examination of the possibilities for the disposition of
the vertices of the inscribed triangle on the sides of the enveloping rectangle.

R C Q
B
A P

Figure 1

Remark. The supplementary part of the enveloping rectangle with respect to the
inscribed Diophantine triangle is composed by 1, 2 or 3 Pythagorean triangles.

The Classification lemma suggests different calculations. We consider the case (4).

Applying the well known formulae for Pythagorean triples we can write:

for AAPB: AP =u? —v?,BP = 2uv, AB = u? —v?, u>v

for ABQC : CQ =p? — ¢*>,BQ =2pq, BC =p> +¢%, p>q

for AACR: RC =22 —y?, AR =22y, AC = 2% + 1%, x>y

From AR = PQ it follows: 2zy = 2pq 4+ 2uv and from AP = RQ it follows:

u? — v =22 —y? +p? — g2

In the Gauss-Diophantine plane we have: (x + iy)? = (¢ + ip)? + (u + iv)%.

This means that (¢ + ip, u + iv, z + iy) is a Pythagorean triple in Z[i]. Now we apply
the Proposition 5, according to which: x + iy = (a + ib)? + (c +id)?, a,b,c,d € Z,
u+iv = (a+ib)? — (c+id)?, q+ip=2(a+ib)(c+ id).

Consequently:

r=a-b+2-d y=2ab—cd),u=a>-b—-c2+d* v =2ab- cd),
p =2(ad + be), g = 2(ac — bd).
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Taking b = ¢ = d = 1 we get only one parameter a. After calculations we obtain
for a = 4 the following triple: AB = 261, BC = 136, AC = 325. For a = 5 we ob-
tain another triple:AB = 640, BC = 208, AC' = 270. It can be verified that these two
triples define Diophantine triangles, and the supplementary triangles APB, BQC,CRA
are Pythagorean.

(AP =189, PB =180, BQ = 120,QC = 64,CR = 125, RA = 300).

Remark. The above exposed examples (proposed by N. Milev and M. Brancheva)
give an idea how to proceed practically to get Diophantine triangles of the kind 4.

Diophantine figures composed by pythagorean triangles with common ca-
thetus. The simplest Diophantine figures are composed by many Pythagorean triangles.

We shall consider the set of Pythagorean triples (z,n,2) in N, i. e. 22 +n? = 22, It
is not supposed that these triples are primitive. We introduce the function x : N — N,
n — k(n), where k(n) is the number of all Pythagorean triangles with cathetus n. By
definition x(0) = 0 and k(m) = 0 if m is not a cathetus in a Pythagorean triangle.

Figure 2

We shall write d | n if d is a divisor of n. By n(d) is denoted the set of all primitive
Pythagorean triples with d as cathetus. It is clear that from each primitive Pythagorean
triple (u, d,v) we can obtain a Pythagorean triple (z, n,y) with cathetus n. It is sufficient

n

to multiply by n_ k,ie z = %u, y= v Having in mind all divisors of n, we can
introduce the following formula:
K(n) =Y n(d)
dln

Lemma. If §(d) is the set of all divisors of d then n(d) < §(d).

Proof. with the help of the proposition 5.
Now let n be as follows: n = p*p5?...p% and d = pllpg2 PP with 0 < 85 < o
After some calculations we receive:

2
n

k(n) < d(n) < H(l + a;j)

j=1
Theorem (M. Brancheva). k(n) = O(n®).

Proof. According to a well known formula (see [8]).

d(n) < exp{(l +p)312nlz1n7)z}
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In2lnn

But exp {(1 + p)m} — p2(4p)In2/Inln(n)  We receive:

B)? < n2+e 2/ i)
Bm)® < o(nf),e > 0.

k(n
Application. lim ——= = 0 which is a conjecture of S. Dimiev.

n—oo N
K(n
It is proved in stronger form: lim Q =0 for every € > 0.
n—oo N

Problems.

1. Let us denote by x(I) the number of all Pythagorean triangles with hypotenuse
[,l € N. Find the asymptotic of the function x(I) when | — oo following the above
exposed case of the function x(n).

2. Given a Diophantine triangle ABC' is it possible to find a point D in the Dio-
phantine plane such that ABCD to be a Diophantine figure? The case when there is no
such point D means that the triangle ABC' is an Erdés-Diophantine figure. Are there
Erdoés-Diophantine triangles? In the case when there is such a point D is it possible to
find an effective algorithm of searching such points?

3. We say that the pyramid ABC'D is a Pythagorean-Diophantine pyramid if the coor-
dinates of the vertices are integers, the lengths of each segment AB, AC, BC, BD, AD,CD
are natural numbers and the triangles ADC, BDC and ADB are Pythagorean. Are there
Pythagorean-Diophantine pyramids?

4. We say that the quaternion ¢ = n + tm + jr + ks, with n,m,r,s € Z, is a
Hamiltonian integer. Each ¢ is represented by a couple of Gauss integers as follows:
q = z+wj, where z = n+im and w = r +is. It is interesting to examine the possibility
to develop a simiral theory for Hamiltonian integers.

5. Examine the coloring problem for Diophantine carpets. For a large class of such
carpets the chromatic number is 2.
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TAYCOBU IIEJIN YNCJIA 1 INOPAHTOBN ®PUT'YPU

Cranyo JumueB, Kpacumup Mapkos

Tazu crarust uma 0630opeH xapakTep. Mamarar ce mojydeHure 10 cera pe3yJITaTh I10
ApUTMETHUKA Ha IEJIUTE TayCOBY YHC/Ia U MPUJIOXKEHUITa UM 38 KOHCTPYHUPAHETO HA

nuodanToBr durypu.
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