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Two representations of the classes of similar triangles are the extended plane and the
shape sphere. Using the shape theorems for triangles we construct some bijective
maps of the shape sphere onto itself preserving the first collision point and obtain the
explicit equations of these maps.
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1. Introduction. The equivalence classes of triangles with respect to the similarity
transformations of the Euclidean plane to itself can be expressed by the points in the
extended plane Ẽ2 = C ∪∞. The main advantage of this representation is the first and
second shape theorems for triangles proved by J. Lester in [3]. These theorems define
two correspondences of the extended plane to itself: three-to-one and four-to-one. Fixing
four or five points, we may consider one-to-one correspondences of Ẽ2 onto itself. It is
well-known that the complex projective line P

1(C) = C ∪ ∞ is homeomorphic to the
two - dimensional sphere (see [1, ch. 4]). But the two-dimensional sphere S2 ⊂ R

3

with radius 1

2
(so called a shape sphere) gives another representation of the classes of

similar triangles. Using a conformal map of the extended plane onto the shape sphere we
can construct certain bijective transformation of the shape sphere. We observe that the
considered transformations are conformal mappings preserving the first collision point
and derive their explicit equations.

2. Classes of similar triangles. The extended plane R
2 ∪ ∞, or equivalently

the complex projective line C ∪∞, can be used for a representation of the equivalence
classes of triangles with respect to direct similarities in the plane. J. Lester applied
this representation for the study of the Euclidean plane (see [3] and [4]). We recall
some basic definitions and assertion from her complex analytic formalism. Identify the
Eclidean plane R

2 with the field of the complex numbers C. Let p,q, r ∈ C be three
points and let at least two of them be different. Then, the number

△pqr =
p − r

p− q
∈ C ∪∞

is called a shape of the oriented triangle pqr. It is clear that △pqr = ∞ iff p = q. For
any degenerate triangle with p 6= q, △pqr ∈ R. In particular: if r is a midpoint of the

segment pq, then △pqr =
1

2
; if q is a midpoint of pr, then △pqr = 2 and if p is a
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midpoint of qr, then △pqr = −1. Similarly, p = r ⇐⇒ △pqr = 0 and q = r ⇐⇒
△pqr = 1. Thus, all degenerate isosceles triangles are described in terms of shapes. It is
clear that the non-degenerate triangle pqr is right-handed iff Im△pqr > 0.

There is another way for a representation of classes of similar triangles (see [2]). The
points of the two-sphere S2 with radius 1

2
also correspond to the equivalence classes of

triangles with respect to the direct similarities in the plane. This sphere is called a shape
sphere. The North and South pole, so called Lagrange’s points L+ and L−, correspond
to the classes of positive and negative oriented equilateral triangles. The points on the
equator represent all classes of degenerate triangles.

Fig. 1

Assume that the shape sphere S2 ⊂ R
3 is given by the equation

x2
1 + x2

2 + x2
3 =

1

4
.

Then, we obtain the coordinates of all remarkable points on the shape sphere. For ex-
ample, L+(0, 0, 1/2) and L−(0, 0,−1/2). The first Euler point E1(1/2, 0, 0) corresponds
to the degenerate triangle pqr in which r is a midpoint of the segment pq. The sec-

ond and third Euler points E2

(
−1

4
,

√
3

4
, 0

)
and E3

(
−1

4
,−

√
3

4
, 0

)
correspond to the

casses in which p and q are midpoints of the segments determined by the remaining two

points. The antipodal points to the Euler points are the collision points C1

(
−1

2
, 0, 0

)
,

C2

(
1

4
,−

√
3

4
, 0

)
and C3

(
1

4
,

√
3

4
, 0

)
corresponding to the degenerate triangles with

coinsidences p=q, q=r and r=p, respectively (see Figure 1). Obviously, the points
on the semisphere

x2
1 + x2

2 + x2
3 =

1

4
, x3 > 0,

represent all non-degenerate and right-handed triangles.
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Now, we consider a map σ of the extended plane onto the shape sphere with the
following property: if Ẽ2 ∋ △ σ−→ U ∈ S2, then △ and U represent the same class
of similar triangles. Suppose that the coordinate plane {x3 = 0} ⊂ R

3 coincides with

R
2 ∼= C. Then the map σ : Ẽ2 −→ S2 is represented by

C ∋ △ = (x, y)
σ−→ U = (u1, u2, u3) ∈ S2 \ C1 and ∞ σ−→ C1,

where

u1 =
2x− 2x2 − 2y2 + 1

4(x2 + y2 + 1 − x)

u2 =

√
3(1 − 2x)

4(x2 + y2 + 1 − x)
(1)

u3 =
2
√

3y

4(x2 + y2 + 1 − x)
.

The reverse map σ−1 : S2 −→ Ẽ2 is defined by

S2 \ C1 ∋ U = (u1, u2, u3)
σ−1

−→ △ = (x, y) ∈ C and C1

σ−1

−→ ∞,

where

x =
1 + 2u1 − 2

√
3u2

2(1 + 2u1)
, y =

√
3u3

1 + 2u1

(u1 6= −1

2
).(2)

We use the above formulas in the last section for obtaining of some mappings of the
shape sphere onto itself.

3. Linear and linear-fractional transformations of the extended plane.

The main calculating tool in complex analytic formalism introduced by J. Lester is
the first and second shape theorems for triangles (see [3]). We apply these theorems for
obtaining of some mappings of the extended plane onto itself.

Suppose that p,q,m1 and m2 are four fixed points in the Euclidean plane such that
p 6= q,m1 6= m2 and p 6= m1,m2. Let m3 be an arbitrary point in the plane and let
△i (i = 1, 2, 3) be the shape of the triangle mipq. Then △i 6= 1 for i = 1, 2, 3 and
△1 6= △2. Using the first shape theorem we calculate

△m1m2m3
=

(1 −△2)(△1 −△3)

(1 −△3)(△1 −△2)
=

(1 −△1)(1 −△2)

△2 −△1

.
1

1 −△3

+
1 −△2

△1 −△2

.

But m1 and m2 are fixed and different points. Hence, the both complex numbers

a =
(1 −△1)(1 −△2)

△2 −△1

and b =
1 −△2

△1 −△2

are neither 0 or ∞. Setting

z = △pqm3
=

1

1 −△m3pq

=
1

1 −△3

∈ C,

we obtain that △m1m2m3
= az+b. Thus, we may consider the mapping ϕ of the extended

plane onto itself defined by

C ∪∞ ∋ z = △pqm3

ϕ−→ △m1m2m3
= az + b ∈ C ∪∞.

It is clear that ϕ(z) = ∞ iff z = ∞, i. e. the restriction ϕ|C : C −→ C is a similarity. If
z = x+ y.i, ϕ(z) = z′ = x′ + y′.i, a = a1 + a2.i and b = b1 + b2.i, the restricted mapping
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ϕ|C is represented by the equations

x′ = a1x− a2y + b1
y′ = a2x+ a1y + b2.

(3)

Let p,q, r,m1 and m2 be five different fixed points in the Euclidean plane and let
p, q, r be non-collinear. If m3 is an arbitrary point in the plane, we denote △1 =
△m1qr, △2 = △m2rp, △3 = △m3pq and △ = △pqr. Using the second shape theorem
for the triangle pqr and the points m1, m2, m3, we calculate

△m1m2m3
=

△△1 − (1 −△1△3)(1 −△3)
−1

△(1 −△1△2)(1 −△2)−1 − 1
=
a△3 + b

c△3 + d
,

where a = (1 −△)△1(1 −△2), b = (△△1 − 1)(1 −△2),
c = (1 −△2) − (1 −△1△2)△ and d = (1 −△1△2)△− (1 −△2).
From m1 6= m2, it follows that

△(1 −△1△2)(1 −△2)
−1 − 1 6= 0.

Then, c = −d 6= 0 and

ad− bc = (1 −△1)(1 −△2)
2 − (1 −△1)(1 −△2)(1 −△1△2)△ 6= 0.

Setting △m3pq = △3 = z and △m1m2m3
= z′, we obtain a bijective transformation ψ of

the extended plane Ẽ2 onto itself defined by

C ∪∞ ∋ z = △m3pq
ψ−→ △m1m2m3

=
az + b

cz + d
= z′ ∈ C ∪∞.

It is well - known that this linear - fractional transformation ψ is conformal. Moreover,
ψ is not a similarity because c = −d 6= 0.

4. Bijective mappings of the shape sphere onto itself. Using the mapping σ
defined in Section 2, we can replace the extended plane by the shape sphere. Thus, we
construct some special bijections of the shape sphere.

Let ϕ : C ∪ ∞ −→ C ∪ ∞ be the transformation defined by the equations (3) for

z 6= ∞ and ∞ ϕ−→ ∞. Then we consider the composition Φ = σ ◦ ϕ ◦ σ−1 which is a
one-to-one mapping of the shape sphere S2 onto itself.

Theorem 1. The transformation Φ : S2 −→ S2 is a conformal mapping preserving

the point C1. Moreover, Φ is defined in the set S2 \ C1 by the equations

u′1 =
−f2(u1, u2, u3) − g2(u1, u2, u3) + h2(u1)

2{f2(u1, u2, u3) + g2(u1, u2, u3) + h2(u1)}

u′2 =
f(u1, u2, u3)h(u1)

f2(u1, u2, u3) + g2(u1, u2, u3) + h2(u1)
(4)

u′3 =
g(u1, u2, u3)h(u1)

f2(u1, u2, u3) + g2(u1, u2, u3) + h2(u1)
,

where S2 \ C1 ∋ U = (u1, u2, u3)
Φ−→ (u′1, u

′

2, u
′

3) = U ′ ∈ S2 \ C1 and

f(u1, u2, u3) = (1 − a1 − 2b1)(1 + 2u1) + 2
√

3(a1u2 + a2u3),

g(u1, u2, u3) = (a2 + 2b2)(1 + 2u1) − 2
√

3(a2u2 − a1u3),

h(u1) =
√

3(1 + 2u1).
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Proof. Both mappings σ and σ−1 can be represented as a product of a stereographic
projection (or its reverse mapping) and a linear-fractional mapping. Hence, the trans-
formation Φ is conformal as a product of three conformal mappings σ−1, ϕ and σ. From
the equations (1) and (2), we have

S2 ∋ C1

σ−1

−→ ∞ ϕ−→ ∞ σ−→ C1.

Let U = (u1, u2, u3) ∈ S2 \ C1. Then

σ−1(U) = z = x+ y.i =
1 + 2u1 − 2

√
3u2

2(1 + 2u1)
+

√
3u3

1 + 2u1

i.

Using (3), we get ϕ(z) = z′ = x′ + y′.i, where

x′ =
a1(1 + 2u1 − 2

√
3u2) − 2

√
3a2u3 + 2b1(1 + 2u1)

2(1 + 2u1)

(5)

y′ =
a2(1 + 2u1 − 2

√
3u2) + 2

√
3a1u3 + 2b2(1 + 2u1)

2(1 + 2u1)
.

Finally, the image of z′ ∈ Ẽ2 under the mapping σ is the point U ′ ∈ S2 \ C1 which
coordinates are

u′1 =
2x′ − 2x′2 − 2y′2 + 1

4(x′2 + y′2 + 1 − x′)

u′2 =

√
3(1 − 2x′)

4(x′2 + y′2 + 1 − x′)

u′3 =
2
√

3y′

4(x′2 + y′2 + 1 − x′)
.

Substituting x′ and y′ by the right-hand sides of (5), we obtain (4). This completes the
proof.

The same approach can be used for the mapping ψ : Ẽ2 −→ Ẽ2. Then the composition
Ψ = σ ◦ ψ ◦ σ−1 also is a bijection of the shape sphere. Since ψ is a linear-fractional
transformation different from a similarity, the bijection Ψ : S2 −→ S2 is a conformal
transformation which does not preserve the point C1.
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ПРЕОБРАЗУВАНИЯ НА ШЕЙП СФЕРАТА

Георги Христов Георгиев, Радостина Петрова Енчева

Две представяния на класовете от подобни триъгълници са разширената равни-

на и шейп сферата. Използвайки шейп теоремите за триъгълник, конструираме

някои биективни изображения върху шейп сферата запазващи първата точка на

съвпадане и получаваме в явен вид уравненията на тези изображения.
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