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ON THE NUMBER OF QUADRICS IN R
n*

Mihail Konstantinov

In this note we give a short proof of the fact that the number of equivalent quadrics
in R

n relative to affine transformations is n
2 + 3n− 1. The well known result for the

number of equivalent quadrics relative to projective transformations is also considered.
A short analysis of quadrics in R

n, including the above results, may be an instructive
complement to the standard material in the course of Analytic Geometry taught in
the Technical and Economics Universities.

1. Introduction. When teaching the course of Analytic Geometry for non-
mathematicians usually the main focus is put on the internal geometry of curves and
surfaces and less attention is paid to the problem of classification (and counting) of these
geometric figures. At the same time classification problems are traditionally of large
interest in mathematics. Moreover, these problems for quadrics (figures described by
quadratic equations) in R

2, R
3 and even in R

n are not difficult and may be well un-
derstood by students in engineering and economics. In this note we briefly discuss the
problems of affine and projective classification of quadrics in Rn in a form suitable for
teaching purposes, see e.g. [2].

2. The problem. A quadric in Rn is the set

Q = {x ∈ R
n : q(x) := x⊤Ax + 2b⊤x + c = 0},

where x = [x1, . . . , xn]⊤, A ∈ Rn×n is a symmetric non-zero matrix, b ∈ Rn, c ∈ R and

⊤ denotes transposition. Two examples are the ellipsoid
x2

1

a2
1

+ · · · +
x2

n

a2
n

− 1 = 0 and the

cone
x2

1

a2
1

+ · · · +
x2

n−1

a2
n−1

−
x2

n

a2
n

= 0.

Let G ⊂ Rn×n be a multiplicative group of non-singular matrices. Consider the
group Γ, acting on Rn as x 7→ γ(x) = Ux+x0, where U ∈ Γ and x0 ∈ Rn. Two quadrics
P, Q ⊂ R

n are said to be Γ–equivalent if there exist γ ∈ Γ and 0 6= α ∈ R such that

P = {x ∈ R
n : αq(γ(x)) = 0}.

The set of all quadrics, equivalent to a given quadric Q, is said to be the orbit of Q. Two
orbits either coincide or are disjoint.

The interesting cases are when G is the group O(n) of real orthogonal n×n matrices
or the group GL(n) of real non-singular n × n matrices.
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In the case G = O(n) the internal geometry of the quadric is preserved but there
are “too many” (a continuum of) orbits. In particular two circles with radiuses r1 > 0
and r2 > 0 are in the same orbit if and only if r1 = r2. If we want all circles (or more
generally, all ellipsoids) to be in the same orbit then we have to consider the group of
affine transformations with G = GL(n).

Below we give a short proof [2] to the fact that the number an of different orbits of
quadrics in Rn with respect to G = GL(n) is

an := n2 + 3n − 1.

It must be pointed out that this result is not popular in the literature although it is well
known that a1 = 3, a2 = 9 and a3 = 17, see e.g. [1].

Remark. In this statement of the problem two quadrics may belong to different
orbits when they define the empty set in Rn. For example, the equations x2

1 + 1 = 0 and
x2

1 + x2
2 + 1 = 0 define non-equivalent quadrics in Rn for n ≥ 2. Of course, considered as

subsets of Cn, the last two quadrics are non-equivalent non-empty figures.

A similar problem arises in the projective classification of quadrics. Set x = u/v
and ξ = [ξ1, . . . , ξn+1]

⊤ := [u⊤, v]⊤ ∈ Rn+1, where u ∈ Rn and v ∈ R. Then the
equation of the quadric Q in the projective space Pn becomes ξ⊤Aξ = 0, where A :=
[

A b
b⊤ c

]

∈ R
(n+1)×(n+1). Here the admissible projective transformations are ξ 7→ Uξ,

U ∈ GL(n + 1), and the problem is to determine the number pn of orbits relative to this
action of GL(n+1). The result pn = (n2 +6n+4)/4 for n even and pn = (n2 +6n+5)/4
for n odd is well known [1].

3. The solution. We may assume that the matrices A and A are diagonal with
diagonal entries equal to 1, 0, or −1 since this can be achieved by suitable transformations
A 7→ U⊤AU and A 7→ U⊤AU with U ∈ GL(n) and U ∈ GL(n + 1) respectively.

3.1. The affine case. In the elliptic case the matrix A is sign-definite and we may
assume that it is equal to the identity matrix. Making a transformation x 7→ λx − b,
λ ∈ R, we obtain 3 quadrics: x2

1 + · · · + x2
n − 1 = 0 (an ellipsoid), x2

1 + · · · + x2
n = 0 (a

point) and x2
1 + · · · + x2

n + 1 = 0 (the empty set in R
n or an imaginary ellipsoid in C

n).

Consider next the hyperbolic case when n ≥ 2 and the matrix A is non-singular
and sign-indefinite. Then A may have m eigenvalues of one sign (say equal to 1 or −1)
and n − m eigenvalues of opposite sign (say equal to −1 or 1). Hence there are n − 1
hyperboloids

x2
1 + · · · + x2

m
− x2

m+1 − · · · − x2
n
− 1 = 0, m = 1, . . . , n − 1,

and
[n

2

]

cones

x2
1 + · · · + x2

m
− x2

m+1 − · · · − x2
n

= 0, m = 1, . . . , n − 1.

Here [r] is the entire part of r > 0. In particular
[n

2

]

= n/2 when n is even and
[n

2

]

= (n − 1)/2 when n is odd.

In the parabolic case when n ≥ 2 the matrix A is singular with at least one zero
eigenvalue. We have the following possibilities:

– one elliptic paraboloid x2
1 + · · · + x2

n−1 − xn = 0,
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– or

[

n − 1

2

]

hyperbolic paraboloids

x2
1 + · · · + x2

m
− x2

m+1 − · · · − x2
n−1 − xn = 0, m = 1, . . . , n − 1,

– or an−1 cylinders (we recall that a cylinder is a figure described by an equation of
the type f(xi1 , . . . , xis

) = 0 with s < n).

Noting that
[n

2

]

+

[

n − 1

2

]

= n − 1 we have

an = 3 +
(

n − 1 +
[n

2

])

+

(

1 +

[

n − 1

2

]

+ an−1

)

= an−1 + 2n + 2.

The solution of this difference equation in an is

an = a1 +
n

∑

k=2

(2k + 2).

Having in mind that a1 = 3 we obtain

an = n2 + 3n − 1.

3.2. The projective case. The number pn of different orbits of quadrics in Rn

relative to the projective equivalence relation satisfies the difference equation

pn = 1 +

[

n + 1

2

]

+ pn−1, n ≥ 2.

Indeed, we have one quadric ξ2
1 + · · · + ξ2

n+1 = 0, or

[

n + 1

2

]

quadrics

ξ2
1 + · · · + ξ2

m
− ξ2

m+1 − · · · − ξ2
n+1 = 0, m = 1, . . . ,

[

n + 1

2

]

.

Since p1 = 3 we get

pn = 3 +

n
∑

k=2

(

1 +

[

k + 1

2

])

=
2n2 + 12n + 9 + (−1)n+1

8
, n ≥ 2.

4. Quadrics in low dimensions. When teaching the elements of multi-dimensional
analytic geometry it is instructive to illustrate the theory by low-dimensional examples.

4.1. The case n = 1. We have only the elliptic class with representatives x2
1−1 = 0

(two points), x2
1 = 0 (a double point) and x2

1 + 1 = 0 (the empty set). Hence a1 = 3.

There are also p1 = 3 figures according to the projective classification, namely ξ2
1 +

ξ2
2 = 0, ξ2

1 − ξ2
2 = 0 and ξ2

1 = 0.

4.2. The case n = 2. The elliptic case involves an ellipse x2
1 + x2

2 − 1 = 0, a point
x2

1 + x2
2 = 0 and the empty set x2

1 + x2
2 + 1 = 0.

The hyperbolic case contains a hyperbola x2
1 − x2

2 − 1 = 0 and a cone (a pair of
intersecting straight lines in this case) x2

1 − x2
2 = 0.

The parabolic case includes a parabola x2
1 − x2 = 0 plus p1 = 3 cylinders (straight

lines in this case)

The total number of figures is 9 which is also the number a2 = 22 + 3 · 2 − 1 = 9.

According to the projective classification we have 2 quadrics ξ2
1 + ξ2

2 + ξ2
3 = 0 and

ξ2
1 + ξ2

2 − ξ2
3 = 0 plus p1 = 3 cylinders. Thus p2 = 5.
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4.3. The case n = 3. The elliptic case contains an ellipsoid x2
1 + x2

2 + x2
3 − 1 = 0,

a point x2
1 + x2

2 + x2
3 = 0 and the empty set x2

1 + x2
2 + x2

3 + 1 = 0.
The hyperbolic case involves 2 hyperboloids x2

1−x2
2 −x2

3−1 = 0, x2
1 +x2

2−x2
3−1 = 0

and a cone x2
1 − x2

2 − x2
3 = 0.

In the parabolic case there are 2 paraboloids x2
1 + x2

2 − x3 = 0, x2
1 − x2

2 − x3 = 0 and
a2 = 9 cylinders.

Thus the number of quadrics in this case is 17, which coincides with a3 = 32+3·3−1 =
17.

In the projective case we have 3 quadrics ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 = 0, ξ2
1 + ξ2

2 + ξ2
3 − ξ2

4 = 0,
ξ2
1 + ξ2

2 − ξ2
3 − ξ2

4 = 0 plus p2 = 5 cylinders, i.e., p3 = 8.

4.4. The case n = 4. The elliptic case includes an ellipsoid x2
1+x2

2+x2
3+x2

4−1 = 0,
a point x2

1 + x2
2 + x2

3 + x2
4 = 0 and the empty set x2

1 + x2
2 + x2

3 + x2
4 + 1 = 0.

The hyperbolic case contains 3 hyperboloids x2
1 −x2

2 −x2
3−x2

4 − 1 = 0, x2
1 +x2

2 −x2
3−

x2
4−1 = 0, x2

1+x2
2+x2

3−x2
4−1 = 0 and 2 cones x2

1−x2
2−x2

3−x2
4 = 0, x2

1+x2
2−x2

3−x2
4 = 0.

The parabolic case involves 2 paraboloids x2
1 +x2

2 +x2
3−x4 = 0, x2

1 +x2
2−x2

3−x4 = 0
plus a3 = 17 cylinders. Hence the number of quadrics here is 27, which corresponds to
a4 = 42 + 3 · 4 − 1 = 27.

In the projective case we have 3 quadrics ξ2
1+ξ2

2+ξ2
3+ξ2

4+ξ2
5 = 0, ξ2

1+ξ2
2+ξ2

3+ξ2
4−ξ2

5 =
0, ξ2

1 + ξ2
2 + ξ2

3 − ξ2
4 − ξ2

5 = 0 and p3 = 8 cylinders, i.e., p4 = 11.
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ВЪРХУ БРОЯ НА КВАДРИКИТЕ В Rn

Михаил Константинов

Дадено е кратко доказателство на факта, че броят на еквивалентните квадрики

в R
n относно афинните трансформации е n

2 + 3n− 1. Разгледан е и добре извес-

тният резултат относно броя на еквивалентните квадрики относно проективната

класификация. По мнение на автора, един кратък класификационен анализ на

квадриките в R
n, включващ горните резултати, е добро допълнение към стан-

дартния материал по дисциплината “Аналитична геометрия”, преподавана в тех-

ническите и икономическите университети.
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