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ON THE NUMBER OF QUADRICS IN R

Mihail Konstantinov

In this note we give a short proof of the fact that the number of equivalent quadrics
in R™ relative to affine transformations is n? + 3n — 1. The well known result for the
number of equivalent quadrics relative to projective transformations is also considered.
A short analysis of quadrics in R™, including the above results, may be an instructive
complement to the standard material in the course of Analytic Geometry taught in
the Technical and Economics Universities.

1. Introduction. When teaching the course of Analytic Geometry for non-
mathematicians usually the main focus is put on the internal geometry of curves and
surfaces and less attention is paid to the problem of classification (and counting) of these
geometric figures. At the same time classification problems are traditionally of large
interest in mathematics. Moreover, these problems for quadrics (figures described by
quadratic equations) in R?, R3 and even in R™ are not difficult and may be well un-
derstood by students in engineering and economics. In this note we briefly discuss the
problems of affine and projective classification of quadrics in R™ in a form suitable for
teaching purposes, see e.g. [2].

2. The problem. A guadric in R™ is the set
Q={zecR":q(z): =z Az +2b' z + ¢ =0},

where © = [z1,...,2,]T, A € R"*" is a symmetric non-zero matrix, b € R", ¢ € R and
2 2
T denotes transposition. Two examples are the ellipsoid —; 4+ 4+ —g — 1 =20 and the
a a
1 n
2 2 2
xr xz -1 xr
cone —5 + -+ —2 —— =0
ay an—1 an

Let G € R™ "™ be a multiplicative group of non-singular matrices. Consider the
group I', acting on R™ as x +— ~y(z) = Uz + xg, where U € T and 9 € R"™. Two quadrics
P, Q C R™ are said to be I'-equivalent if there exist v € I' and 0 # « € R such that

P ={zeR": aq(y(z)) =0}.
The set of all quadrics, equivalent to a given quadric @, is said to be the orbit of (). Two
orbits either coincide or are disjoint.

The interesting cases are when G is the group O(n) of real orthogonal n X n matrices
or the group GL(n) of real non-singular n x n matrices.
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In the case G = O(n) the internal geometry of the quadric is preserved but there
are “too many” (a continuum of) orbits. In particular two circles with radiuses r; > 0
and 3 > 0 are in the same orbit if and only if r; = 5. If we want all circles (or more
generally, all ellipsoids) to be in the same orbit then we have to consider the group of
affine transformations with G = GL(n).

Below we give a short proof [2] to the fact that the number a,, of different orbits of
quadrics in R™ with respect to G = GL(n) is

Ay 1= n?+3n—1.
It must be pointed out that this result is not popular in the literature although it is well
known that a; = 3, a2 =9 and ag = 17, see e.g. [1].

Remark. In this statement of the problem two quadrics may belong to different
orbits when they define the empty set in R™. For example, the equations 22 + 1 = 0 and
2?2 + 22 + 1 = 0 define non-equivalent quadrics in R™ for n > 2. Of course, considered as
subsets of C™, the last two quadrics are non-equivalent non-empty figures.

A similar problem arises in the projective classification of quadrics. Set z = w/v
and & = [¢1,...,&1]" == [uT,v]T € R*"™! where v € R” and v € R. Then the
equation of the quadric @ in the projective space P™ becomes ¢ T A& = 0, where A :=

A b

bT
U € GL(n+1), and the problem is to determine the number p,, of orbits relative to this
action of GL(n+1). The result p, = (n?+6n+4)/4 for n even and p,, = (n?+6n+5)/4
for n odd is well known [1].

e R(+Ux(+1) Here the admissible projective transformations are & — UE,

3. The solution. We may assume that the matrices A and A are diagonal with
diagonal entries equal to 1, 0, or —1 since this can be achieved by suitable transformations
A~ UTAU and A — UTAU with U € G£(n) and U € GL(n + 1) respectively.

3.1. The affine case. In the elliptic case the matrix A is sign-definite and we may
assume that it is equal to the identity matrix. Making a transformation x — Az — b,
A € R, we obtain 3 quadrics: 2% 4+ -+ + 22 — 1 = 0 (an ellipsoid), 23 +--- +22 =0 (a
point) and 2% + --- + 22 + 1 = 0 (the empty set in R” or an imaginary ellipsoid in C").

Consider next the hyperbolic case when n > 2 and the matrix A is non-singular
and sign-indefinite. Then A may have m eigenvalues of one sign (say equal to 1 or —1)
and n — m eigenvalues of opposite sign (say equal to —1 or 1). Hence there are n — 1

hyperboloids

2 2 2 2
i+t T, Ty — 2, —1=0,m=1,...,n—1,

and [g} cones

2 2

x1+---+x2m—x2m+1—---—xn=0, m=1,...,n—1.
Here [r] is the entire part of » > 0. In particular [g} = n/2 when n is even and
[g} = (n —1)/2 when n is odd.

In the parabolic case when n > 2 the matrix A is singular with at least one zero
eigenvalue. We have the following possibilities:
— one elliptic paraboloid 2 + -+ + 22 | —x, = 0,
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-1
—or {n > ] hyperbolic paraboloids

2 2 2 2
x1++xm71m+1771

1~ ZTpn=0 m=1,...,n—1,

— or a,—1 cylinders (we recall that a cylinder is a figure described by an equation of
the type f(zi,,...,2;,) =0 with s < n).

-1
Noting that [g} + [n

=n—1 h
5 } n we have

n n—1
an:3+(n—1+[§D+ 14+ 5 4+ an_1 ) =an_1+2n+ 2.

The solution of this difference equation in a,, is

an = a1 + Z(Qk +2).
k=2
Having in mind that a; = 3 we obtain

an=n2—|—3n—1.

3.2. The projective case. The number p, of different orbits of quadrics in R™
relative to the projective equivalence relation satisfies the difference equation
n+1

n:]-
po=1+|"3

:| +pn717 n Z 2.

1
Indeed, we have one quadric &2 + - - - + 572&1 =0, or [%] quadrics

€%+"'+§72n_€7%n+1_”'_€31+1207 m:l,...,[

Since p; = 3 we get

- k41 2n% +12n + 9 + (—1)"*!
P 3+k22< +[ 5 D < n

n+1
5 .

4. Quadrics in low dimensions. When teaching the elements of multi-dimensional
analytic geometry it is instructive to illustrate the theory by low-dimensional examples.

4.1. The case n = 1. We have only the elliptic class with representatives 22 —1 = 0
(two points), 22 = 0 (a double point) and 23 + 1 = 0 (the empty set). Hence a; = 3.

There are also p; = 3 figures according to the projective classification, namely &7 +
£=0¢&-&=0and & =0.

4.2. The case n = 2. The elliptic case involves an ellipse 22 + 23 — 1 = 0, a point
2?2 4+ 22 = 0 and the empty set 22 + 22 + 1 = 0.

The hyperbolic case contains a hyperbola 27 — 23 — 1 = 0 and a cone (a pair of
intersecting straight lines in this case) 23 — 23 = 0.

The parabolic case includes a parabola z? — x5 = 0 plus p; = 3 cylinders (straight
lines in this case)

The total number of figures is 9 which is also the number ay =22 4+3-2 —-1=9.

According to the projective classification we have 2 quadrics &2 + &3 + ¢€2 = 0 and
£ + &2 — ¢2 =0 plus p; = 3 cylinders. Thus ps = 5.
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4.3. The case n = 3. The elliptic case contains an ellipsoid 23 + 2% + 2% — 1 = 0,
a point #7 + 2% + 22 = 0 and the empty set 27 + 23 + 22 + 1 = 0.

The hyperbolic case involves 2 hyperboloids 2 —23 —22 —1 =0, 22+ 22 —22—-1=0
and a cone 23 — 23 — 23 = 0.

In the parabolic case there are 2 paraboloids 22 + 23 — x3 = 0, 22 — 22 — 3 = 0 and
as = 9 cylinders.

Thus the number of quadrics in this case is 17, which coincides with a3 = 324+3-3—1 =
17.

In the projective case we have 3 quadrics €2 + &3 + €2 +€2 =0, +E3+62 - €2 =0,
€2 + €2 — €2 — €2 = 0 plus pa = 5 cylinders, i.e., p3 = 8.

4.4. The case n = 4. The elliptic case includes an ellipsoid 22+ 23+ 22 +23—1 =0,
a point 23 + 23 + 23 + 22 = 0 and the empty set 22 + 23 + 22 + 22 + 1 =0.

The hyperbolic case contains 3 hyperboloids 2 — 23 — 23 — 23 —1 =0, 23 + 23 — 2% —

23—-1=0, 22 +23+22—23—1 =0and 2 cones 27 —23—23—2% = 0, 23+ 23 —2%—2% = 0.
The parabolic case involves 2 paraboloids 2% + 23+ 23 — 24 =0, 23 + 23 — 2% —24 =0
plus ag = 17 cylinders. Hence the number of quadrics here is 27, which corresponds to
ag =4%+3-4—1=2T7.
In the projective case we have 3 quadrics 2 +£3+E24+E2 462 = 0, 3 HE3+E3+62 €2 =
0, 2 +¢&3 462 — €3 — €2 =0 and p3 = 8 cylinders, i.e., py = 11.
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BBbPXY BPOA HA KBAJIPUKUWUTE B R”

Muxania KoncranTuunos

JlateHo e KpaTKo JI0Ka3aTesICTBO Ha (akTa, e OpOosIT Ha €eKBUBAJECHTHUTE KB IPUKN
B R" orrocro aduuEnTe Tpanchopmamun e n’ + 3n — 1. Pasrrenan e u 1o6pe n3Bec-
THUAT PE3YJITAT OTHOCHO OPOsi HA eKBUBAJIEHTHUTE KBAJIPUKH OTHOCHO IIPOEKTUBHATA,
kiacndukanys. [lo MHeHne Ha aBTOpa, €IMH KpaTbK KJIACH(MUKAIMOHEH aHAJIM3 Ha
kBaJipukuTe B R™, BKIIIOYBAI TOPHUTE PE3YJITATH, € J0OPO JOI'bJIHEHNE K'bM CTaH-
JApTHUS MAaTEPUAJI 10 NUCIUILINHATA “AHAIUTUYIHA reoMeTpust, TPENOJIaBaHa B TE€X-
HUYECKUTE U UKOHOMUYECKUTE YHUBEPCUTETH.
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