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A compact set K in R
n is said to be an irreducible boundary if R

n\K is disconnected
and K is a boundary of each component of R

n \ K. This paper contains a necessary
and sufficient condition which describes irreducible boundaries in R

n: the compactum
K ⊂ R

n is an irreducible boundary if and only if it is a frame of some minimal essential
family. As a corollary the classical Jordan curve theorem is obtained.

1. Introduction. The classical Jordan Curve Theorem states the fact which is
geometrically quite “obvious”: every simple closed curve in the plane R2 divides the
plane into two pieces, the “inside” and “outside” of the curve, and it is their common
boundary.

Speaking more generally the Jordan theorem states that if K is a homeomorphic
image of the (n− 1)-dimensional unit sphere Sn−1 in Rn then K separates Rn into two
domains (connected open sets) and K is their common boundary. In other words K is
an irreducible boundary in Rn.

Definition 1.1.The compactum K in the n-dimensional space Rn is said to be an
irreducible boundary if and only if Rn \ K is disconnected and K is a boundary of each
component of Rn \ K.

Note that for any proper closed subset H of K the above assertion fails: Rn \H is a
connected set.

Certainly the topological images of the sphere are not at all the only examples of
irreducible boundaries in Rn; we may point here for the example “Wada lakes” or more
simple constructions like the so called “Warsaw circumference”: W = {(0, y)| − 2 ≤ y ≤
1} ∪ {(x,−2)|0 ≤ x ≤ 1} ∪ {(1, y)| − 2 ≤ y ≤ sin 1} ∪ {(x, y)|y = sin 1

x
; x ∈ (0, 1]} ⊂ R2

and similar surfaces in the space Rn.
In this paper we give a common description of all irreducible boundaries in Rn. Our

considerations utilize classical topology technique and are based on one of the fundamen-
tal (and also classical) notions in dimension theory: essential families. We also reprove
here some fundamental facts of the dimension theory in (probably) more easy way.

We recall below some standard denotations and well known definitions.
All topological spaces below are subsets of the Euclidean n-dimensional space Rn

with the standard norm.
For X ⊂ Rn we denote by O̺(X) = {x ∈ Rn|d(x, X) < ̺} and B̺(X) = {x ∈

Rn|d(x, A) ≤ ̺} the open and closed ̺-neighbourhoods of the set X ⊂ Rn. Thus O̺(x)
and B̺(x) are open and closed balls respectively, centered in x ∈ Rn and with radius ̺.
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We also put S̺(x) = B̺(x) \ O̺(x) the (n − 1)-dimensional sphere with a center at x

and radius ̺.

Definition 1.2.The closed set C of a topological space X is said to be a partition
(or separator) between F and G if X \C = U ∪ V where Uand V are open sets; U ⊃ F ;
V ⊃ G and U ∩ V = ∅.

Definition 1.3. Let Σ = {(F−1, F+1), . . . , (F−n, F+n)} be a family of disjoint pairs of
closed subsets of the topological space X. Σ is said to be an essential family (often short-
ened to n-family) if for an arbitrary collection {Ci}n

i=1, of separators Ci in X between

{F−i} and {F+i} we have
n
⋂

i=1

Ci 6= ∅.

One of the basic results in dimension theory states that for normal spaces X we have
dimX ≥ n if and only if there exists an essential family in X [4,5].

In describing the irreducible boundaries, we make use the following term.

Frame of an essential family – the set |Σ| =
n
⋃

i=1

(F−i ∪F+i) is called a frame (or fence)

of Σ.

Definfition 1.4. An essential n-family Σ in a given topological space X is said to
be minimal in X if for an arbitrary proper closed set Y ⊂ X the restriction Σ|Y =
{(Y ∩ F−i, Y ∩ F+i}n

i=1 is not essential family in Y .

Definition 1.5.The subspace K of a given topological space X is said to be a fence, if
it is a minimal frame in X. This means that one can find such an essential family Σ in X

that K = |Σ| and if H is a proper subset of K, then the restriction Σ|H = {H ∩ F±i}n
i=1

is not essential in X.

Further we refer to the space X as a membrane spanned on Σ if for any nonempty
open set U ⊂ X , the family Σ is not essential in the space (X \ U) ∪ |Σ|.

A classical example of an essential family is given by Lebesgue [1] – the collection of
the opposite faces of an n-dimensinal cube In; I = [−1, 1]. Here F±i = {x ∈ In|xi = ±1}
(it is easy to prove by using the Sperner lemma). It is a trivial observation also that In

is a membrane on its fence: for an arbitrary point p ∈ Int(In) the separators Ci = {x ∈
In|xi = pi} have as an intersection the single point set {p}.

The main result in the present paper states that the irreducible boundaries in Rn are
quite similar to the fence of In:

Theorem: The compact subset K of Rn is an irreducible boundary if and only if K

is a fence in Rn.

2. Propositions and Lemmas.

Proposition 2.1 ([9]). If for a compact set K ⊂ Rn the complement Rn \ K is
disconnected, then K is a frame (not necessary a fence) of an essential family.

Proof. Choose a bounded component U of Rn \ K and fix some point p ∈ U .
Clearly one may take a > 0 large enough for which the inclusion K ∪ U ⊂ Q = [−a, a]n

holds. Denote by Q±i the opposite faces Q±i = {x ∈ Q|xi = ±a} of the n-dimensional
cube Q and let P±i be the pyramid with a base Q±i and as a vertice the point p. We set
K±i = K∩P±i. It is easy to see that the desired essential family is Σ = {(K−i, K+i)}n

i=1.
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Furthermore recall that for given 0 < δ < ̺ and for O = O̺(p), B = Bδ(p) one can
find homeomorphisms g : O → Rn and h : Rn \ B → Rn \ {p} such that each of the
restrictions g|

B
and h|

Rn\O
is the identity.

Lemma 2.2. Suppose that Σ = {K±i}n
i=1 is minimal in the set H ⊂ Rn and let p be

an inner point of H. Then there exists a family {Ci}n
i=1 of separators between K−i and

K+i in H for which
n
⋂

i=1

Ci = {p}.

Proof. Choose the positive numbers ε and ̺ so that p ∈ B = Bε(p) ⊂ O = O̺ ⊂ H .
The family Σ is not essential in the proper closed subset H \Oε such that Σ is minimal.
Hence one can find partitions C′

i between K−i and K+i with an empty intersection. By

using standard topological techniques we can expand each C′
i to a separator

∼

Ci
between

K−i and K+i in H .

Apparently ∅ 6=
n
⋂

i=1

∼

Ci
⊂ B. Now we use the previous Lemma and take a homeomor-

phism h : Rn \ B → Rn \ {p}. It is easy to see that Ci = {p} ∪ h(
∼

Ci
) is a separator

between h(K−i) = K−i and h(K+i) = K+i in h(H) = H . It is clear that
n
⋂

i=1

Ci = {p}.

Now let γ be a piecewise linear path which connects the points p and q in Rn and
for ε > 0 P = Oε(γ) be the ε-neighbourhood of γ. It is a folklore fact that there exists
a homeomorphism h : Rn → Rn with h(p) = q and which is the identity on Rn \ O.

Proposition 2.3. [9] Let K ⊂ Rn be a compact frame of the essential family Σ (i.e.
|Σ| = K). Then Rn \ K is not connected.

Hint. Let O and B be open and closed balls, centered for example at the origin 0 and
K ⊂ B ⊂ O. As in the Lemma 2.3, choose a homeomorphism g : O → Rn with g|

B
= id.

Note that g(K) = K = g−1(K), hence Σ is essential in O. Clearly it is essential in every
space which contains O, in particular Σ is an essential family in the closure B of O.

Thus it is clear that we can divide the points of Rn \ K into two classes, say U and
V : p ∈ U if and only if Σ is still essential in Rn \ {p} and V = Rn \ (K ∪ U). V is
nonempty by means of Lemma 2.2 and U ⊃ Rn \B 6= ∅. According to the above remark
there is no piecewise linear path which connects a point of U with a point of V which
copletes the proof.

Lemma 2.4. If the simplicial complex K is an irreducible boundary in Rn then K

divides Rn into two connected components.

Proof. Because each irreducible boundary in R1 is a point, we suppose n ≥ 2. Let
P be a simplex of K and let L = span(P ). Clearly L is an (n− 1)-dimensial hyperplane
in Rn which is homeomorphic to Rn−1. Let us pick a point p ∈ IntL(T ). Consider the
set Q = p + 1

2 (P − p) – the image of P under the homothety with a factor 1
2 and a ray

center at p. Clearly Q and K \ IntL(P ) are two disjoint compact sets so one can choose
a positive ε < d(Q, K \ IntL(P )). Choose furthermore a unit vector e in Rn which is
orthogonal to L. The open set U = IntL(Q) × (−ε, ε) =

⋃

x∈IntL(Q)

(x − εe, x + εe) meets

K only in the points of IntL(Q) and every such point is a boundary point for exactly
two components: IntL(Q) × (−ε, 0) and IntL(Q) × (0, ε).
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3. The main Theorem and corollaries.

Proof of the Theorem of Section 1. Let K ⊂ Rn be an irreducible boundary.
It follows by Proposition 2.1 that there exists an essential family Σ = {(K−i, K+i)}n

i=1

with |Σ| = K. Suppose that H ⊂ K is closed and K \ H 6= ∅. If the family Σ|
H

was
essential then according to Proposition 2.3 the set Rn \ H would be disconnected. But
by our hypothesis K is an irreducible boundary, so the set Rn \ H is connected. Hence
Σ|H is not essential and thus Σ is a fence.

Suppose now that K = |Σ| is a fence of the minimal essential n-family Σ. Then using
Proposition 2.3 we see that Rn \ K is not connected. Supposing that for some proper
closed subset H of K the set Rn \H remains disconnected, we obtain by Proposition 2.1
that the family Σ|

H
is still essential. This contradicts the assumption that Σ is minimal.

Hence K is an irreducible boundary.

Corollary 3.1. (The Jordan Separation Theorem), Let f : Sn−1 → Rn be an em-
bedding of the (n − 1)-dimensional sphere in the n-dimensional Euclidean space. Then
Rn \ f(Sn−1) is disconnected and f(Sn−1) is a boundary of each component of its com-
plement.

Proof. We consider Sn−1 as a boundary of the n-dimensional cube In. As was men-
tioned above, Sn−1 is the fence of the standard essential family Φ = {(F−i, F+i)}n

i=1 in
In. Put K = f(Sn−1) and suppose that Σ = f(Φ) is not essential (Σ = {(K−i, K+i)}n

i=1

where K±i = f(I±i). Then there exists a family {Ci}n
i=1 between K−i and K+i in Rn

with an empty intersection. We set Rn \Ci = U−i∪U+i where U±i ⊃ K±i; U±i are open
and U−i ∩ U+i = ∅.

Consider Rn as the hyperplane {x ∈ Rn+1|xn+1 = 0} and let V±i be open disjoint sets

in Rn+1 for which V±i∩Rn = U±i. Evidently V =
n
⋃

i=1

(V−i∪V+i) ⊃
n
⋃

i=1

(U−i∪U+i) = Rn

since Σ is not essential. Now take a closed ball B in Rn which contains K. B is a compact
set and B ⊂ V – hence there exists r > 0 for which Or(B) ⊂ V . In particular the cylinder
P = B × (−r, r) lies in V . Let p ∈ P and form the cone Q with a vertex p and base
K: Q =

⋃

{[p, x]|x ∈ K}. Clearly Q ⊂ P because P is a convex set. Furthermore Q

is homeomorphic to In. A homeomorphism g : In → Q is given for example by the
expression

g(t) = p + ‖t‖

(

f

(

t

‖t‖

)

− p

)

for t 6= 0 and g(0) = p. Denote now W±i = g−1(Q ∩ V±i). Clearly W±i ⊃ F±i;

W−i ∩ W+i = ∅ and if Di = In \ (W−i ∪ W+i) = g−1(Q ∩ Ci) we have
n
⋂

i=1

Di = ∅ which

is a contradiction to the essentiality of Σ in In.
The family Σ is minimal – this is an easy consequence from the fact that for every

proper closed subset L of K there exists an open in K set U ⊃ L which is homeomorphic
to Rn−1.

Corollary 3.2. (The Jordan Curve Theorem) If K ⊂ Rn is homeomorphic to Sn−1,
then Rn \ K contains exactly two connected components.

Hint of the proof. Consider the (n − 1)-dimensional sphere Sn−1 as the boundary
of the n-dimensional simplex ∆n and suppose furthermore that f : Sn−1 → Rn is an
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embedding. For an arbitrary ε > 0 one can find a simplicial ε-approximation gε : Sn−1 →
Rn which is an embedding. Thus for x ∈ Sn−1 we have ‖f(x) − gε(x)‖ ≤ ε. According
to Lemma 2.4 and Corollary 3.1 Rn \ gε(S

n−1) consists of two connected open sets – a
bounded one Bε and an unbounded Uε.

To continue on we divide the points of Rn \ f(Sn−1) of two sets B and U : x ∈ B

(x ∈ U) if and only if there exists ε0 > 0 such that for ε < ε0 the inclusion x ∈ Bε

(x ∈ Uε) is fulfilled. It is not of serious diffcultness to see that B and U are open and
connected and Rn \ f(Sn−1) = B ∪ U .

Corollary 3.3. ([2,3]) Let K ⊂ Rn be a compact set. Then Rn \ K is disconnected
if and only if there exists an essential map f : K → Sn−1.

Proof. Consider Sn−1 as a boundary of the n-dimensional cube In; I = [−1, 1].
Let furthedmore Σ = {(K−i, K+i)}n

i=1 be a family of disjoint closed pairs in K. One may
take for every i a function fi : Rn → [−1, +1] for which f−1

i (±1) = K±i and then put
f(x) = (f1(x), . . . , fn(x)). It is easy to prove that the restriction of f over K is essential
if and only if Σ is an essential family.

Corollary 3.4. ([6]) Every irreducible boundary in Rn+1 is a Cantor n-manifold.

Proof. It is easy to see ([10]) that the fence of every minimal essential n-family in
Rn is a irreducible cyclic compactum in the sense of [6].
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ПОГЛЕД ВЪРХУ ТЕОРЕМАТА НА ЖОРДАН

Владимир Т. Тодоров

В тази работа са описани геометрично абсолютните граници в R
n: подмножес-

твото K на R
n е абсолютна граница тогава и само тогава, когато е рамка на

съществена n-система. Разбира се, резултатът не е нов, но такъв подход не ни е

известен. Ползата от него се състои в това, че теоремата на Жордан е тривиално

следствие от геометричната характеристика на абсолютните граници.
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