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Following Prof. G. Stanilov we investigate 4-dimensional point-wise hypersurface of
constant type in respect to the classical Jacobi operator and to the skew symmetric
curvature operator which is defined from him in 1989. Such manifolds are either
manifolds of constant sectional curvature or so called parabolical hypersurface without
plane points. In the second case one gets also so called hypersurfaces with IP-metric.

In the last 10 years there are many investigations about manifolds of point-wise con-
stant type. There are used usually the following curvature operators:

1. The classical Jacobi operator;

2. The generalized Stanilov-Jacobi operator [1, 2];

3. The skew-symmetric Stanilov curvature operator [1, 3, 4].

But as we know nobody until this time has investigated submanifolds in respect of
these three operators. Because of this we are very grateful to Prof. Stanilov for bringing
to our attention such problems.

We shall use some facts from [5] for hypersurfaces in the Euclidean space.

The curvature tensor for such a hypersurface M in Rn can be represented by the
equations

(1) R (ei, ej) ek =



















0 k 6= i, j

−λiλjej k = i

λiλjei k = j

,

where λi, i = 1, 2, . . . , n are the eigenvalues of the symmetric operator A (the generalized
Weingarten operator in the classical differential geometry of the surfaces) and ei, i =
1, 2, . . . , n are the corresponding eigenvalues, which form an orthonormal base. Here we
consider dimension n = 4. In this case the equations (1) can be written more detailed in
the following way:
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(2)

R(e1, e2, e1) = −λ1λ2e2 R(e2, e3, e1) = 0
R(e1, e2, e2) = λ1λ2e1 R(e2, e3, e2) = −λ2λ3e3

R(e1, e2, e3) = 0 R(e2, e3, e3) = λ2λ3e2

R(e1, e2, e4) = 0 R(e2, e3, e4) = 0

R(e1, e3, e1) = −λ1λ3e3 R(e2, e4, e1) = 0
R(e1, e3, e2) = 0 R(e2, e4, e2) = −λ2λ4e4

R(e1, e3, e3) = −λ1λ3e1 R(e2, e4, e3) = 0
R(e1, e3, e4) = 0 R(e2, e4, e4) = λ2λ4e2

R(e1, e4, e1) = −λ1λ4e4 R(e3, e4, e1) = 0
R(e1, e4, e2) = 0 R(e3, e4, e2) = 0
R(e1, e4, e3) = 0 R(e3, e4, e3) = −λ3λ4e4

R(e1, e4, e4) = λ1λ4e1 R(e3, e4, e4) = λ3λ4e3

The sectional curvature of the plane ei ∧ ej is given by

(3) Kij = λiλj .

I. Investigations of 4-dimensional hypersurfaces in respect to the classical

Jacobi curvature operator. Let M4 ⊂ R5 be a hypersurface in the five dimensional
Euclidean space. The classical Jacobi operator in respect to the unit vector x at the
point p ∈ M4 is defined by the equation

Rx(u) = R(u, x, x), u ∈ M4

p .

If the unit vector u is an eigenvector of Rx, then the equation holds good

R(u, x, x) = c(p; x)u.

Here c(p; u) is the corresponding eigenvalue to u which depends of the point p and
from the vector u.

If

(4) c(p; x) = c(p)

at any point p of M4 the hypersurfaces will be called point-wise Osserman hypersurface
of constant type.

At first we find a necessary conditions for it.

The operator Re1
in respect to the orthonormal base

ei, i = 1, 2, 3, 4 has the matrix.








0 0 0 0
0 λ1λ2 0 0
0 0 λ1λ3 0
0 0 0 λ1λ4









It shows that the eigenvalues of Re1
are

(5) 0, λ1λ2, λ1λ3, λ1λ4.

In the same way we find: the eigenvalues of the operator Re2
are

(6) 0, λ2λ1, λ2λ3, λ2λ4;
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of the operator Re3
are

(7) 0, λ3λ1, λ3λ2, λ3λ4;

of the operator Re4
are

(8) 0, λ4λ1, λ4λ2, λ4λ3.

The condition (4) for the point-wise constancy means that the series of the numbers
(5)–(8) are identical. Thus we get

Proposition 1. If the M4 ⊂ R5 is point-wise constant Osserman hypersurface, then
either the case holds good
a) λ1 = λ2 = λ3 = λ4,
or the case
b) λ2 = λ3 = λ4 = 0 6= λ1

(exactly three of the eigenvalues λi are 0, the fourth one can not be 0).

To prove the converse we remark that in the case a) the hypersurface is of constant
sectional curvature. In the second case b) all components of the curvature tensor are
0. This case is a generalization of the so-called parabolical surface without plane points
in the 3-dimensional Euclidean space. We call such surfaces generalized parabolical
hypersurface. Thus we have

Theorem 1. The hypersurface M4 ⊂ R5 is point-wise Osserman hypersurface of con-
stant type iff either it is a hypersurface of constant sectional curvature or it is a general-
ized parabolical hypersurface, in particular it is also a space of constant (zero) curvature.
(eventually Euclidean four-dimensional space).

II. Investigations of 4-dimensional hypersurfaces in respect to the Stanilov

skew-symmetric curvature operator. Now we use the skew-symmetric curvature
operator introduced from Prof. Grozio Stanilov in 1989. The definition is the following.

If x, y is any orthonormal pair of vectors in the tangent space, Stanilov’s curvature
operator is defined by

kx,y(u) = R(x, y, u), u ∈ Mp

kx,y does not depend of the orthonormal base x, y of the plane E2 = ei ∧ ej . Because of
this it is defined

kE2 = kx,y .

This operator is skew-symmetric one. Because of this fact it has not real eigenvalues.
But its square has real eigenvalues. More detailed, if

kE2(u) = c(p; E2)
√
−1 u, u ∈ Mp,

then

k2

E2(u) = −c(p, E2)2 u, u ∈ Mp.

A hypersurface M4 is called point-wise Stanilov of constant type iff

c
(

p; E2
)

= c (p)

for any 2-dimensional plane E2 in Mp for any p ∈ M .

Using [6] we have

kei,ej
(u) = −K2

ij u, u ∈ ei ∧ ej.
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For any ei ∧ ej we have

K2

ij = (λiλj)
2

The condition of the constancy of the eigenvalues of this operator means that the
following equations hold good:

λ2

1
λ2

2
= λ2

1
λ2

3
= λ2

1
λ2

4
= λ2

2
λ2

3
= λ2

2
λ2

4
= λ2

3
λ2

4
.

Essentially we have two different cases:
1. At least two of λ2

i , λ
2

j are different. If λ2

s 6= λ2

k it follows that all λi = 0 except
eventually one of them is not 0. For example λ1 = λ2 = λ3 = 0 6= λ4.

2. If all λ2

i are equal, then we have essentially the following three algebraic possibilities
for the signs of the numbers, which are modulo equal (|λ1| = |λ2| = |λ3| = |λ4|) :

λ1 λ2 λ3 λ4

2.1 + + + +
2.2 + + + –
2.3 + + – –

Then:
2.1) K12 = K13 = K14 = K23 = K24 = K34

and the hypersurface is of constant sectional curvature.
2.2) K12 = K13 = K23 = −K14 = −K24 = −K34.
In this case the hypersurface has IP-metric [7] (case (v) from Proposition 2.3).
2.3) K12 = K34 = −K13 = −K14 = −K23 = −K24.
This case is impossible (the case (iv) from the same Proposition 2.3 [7]).
Thus we can formulate the following

Theorem 2. A four dimensional hypersurface M4 in the 5-dimensional Euclidean
space R5 is point-wise Stanilov of constant type if it is one of the following three types:

I. The hypersurface M4 is of constant sectional curvature;
II. The hypersurface M4 is a generalized parabolical hypersurface (in particular it is

also a space of constant (zero) curvature).
III. The hypersurface M4 is a warped product: B1 ×f N3;
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4-МЕРНИ ТОЧКОВО ПОСТОЯННИ ХИПЕРПОВЪРХНИНИ ОТ

КОНСТАНТЕН ТИП

Юлиан Цанков Цанков, Мария Вълкова Стоева

Следвайки проф. Станилов разглеждаме 4-мерни точково постоянни хиперпо-
върхнини от константен тип на R

5 по отношение на класическия оператор на
Якоби и на антисиметричния кривинен оператор дефиниран от него през 1989.
Такива хиперповърхнини са с постояна секционна кривина. Сред тях са и така
наречените параболични повърхнини без равнинни точки (които също са с посто-
яна (нулева) секционна кривина). При антисиметричния оператор се получават
и хиперповърхнини с IP-метрика (с метрика на Иванов-Петрова).
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