CHARACTERIZATION OF A FOUR-DIMENSIONAL EINSTEIN-RIEMANNIAN MANIFOLDS BY DEGENERATED JACOBI OPERATOR AND BASISES OF SINGER-THORPE

Veselin T. Videv, Yulian T. Tzankov, Maria V. Stoeva
In the present short note we charactreize these classes of a four-dimensional EinsteinRiemannian manifolds, for which the determinant of Jacobi operator R_{X} is equal to zero at any point of the manifold, and for any tangent vector X, which belongs to one of the coordinate planes spanned from a basis of Singer-Thorpe.

Let (M, g) be an n-dimensional Riemannian manifolds with metric tensor g, let M_{p} be the tangent space at a point $p \in M$, and let $S_{p} M$ be the set of all unit tangent vectors in M_{p}. If ∇ is the Levi-Civita connection of M, then R is the curvature tensor defined by $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$, for any tangent vectors $X, Y \in M_{p}$, where $p \in M$. Let $\rho(x, y)$ be the Ricci bilinear function defined by $\rho(x, y)=\operatorname{trace}(u \rightarrow R(u, x, y))$, for any $x, y \in M_{p}, p \in M$, let ρ be the corresponding Ricci operator defined by $g(\rho(x), y)=$ $\rho(x, y)$, and let τ be the trace of ρ which is called scalar curvature on $M[1]$. It is wellknown the following

Theorem 1[1]. Let (M, g) be an n-dimensional $(n \geq 3)$ Riemannian smooth manifold such that the Ricci curvature $\rho(X, X)$ does not depend on any tangent vector $X \in S_{p} M$, at any point $p \in M$. Then

$$
\begin{equation*}
\rho(X, X)=\lambda, \quad \text { where } \lambda \text { is a constant on } M . \tag{1}
\end{equation*}
$$

Definition 1 [6]. Any Riemannian manifold (M, g) with property (1), is called Einstien-Riemannian manifold, such that
(2) $\rho(X, Y)=\lambda g(X, Y)$, for any tangent vectors $X, Y \in M_{p}$, at any point $p \in M$.

It is well-known that the corresponding curvature tensor of type $(0,4)$ has the following algebraic properties [1]:

$$
\begin{gather*}
R(x, y, z, u)=-R(y, x, z, u), \\
R(x, y, z, u)=-R(x, y, u, z), \tag{3}\\
R(x, y, z, u)+R(y, z, x, u)+R(z, x, y, u)=0-\text { first Bianchi identity. }
\end{gather*}
$$

Also R satisfies the second differentially Bianchi identity [1]:

$$
\begin{equation*}
\sigma_{x y z}\left(\nabla_{x} R\right)(y, z, u)=0 \tag{4}
\end{equation*}
$$

where σ is a cyclic sum over x, y, z. Let $\wedge^{2}\left(M_{p}\right)$ be a 2-vector space over M_{p} with standard metric [2]: $\hat{g}\left(v_{1} \wedge v_{2}, w_{1} \wedge w_{2}\right)=\operatorname{det}\left(g\left(v_{i}, w_{j}\right)\right)\left(v_{1}, v_{2}, w_{1}, w_{2} \in M_{p}\right)$ and with curvature operator \Re defined by $[2]: \hat{g}(\Re(x \wedge y), z \wedge v)=g(R(x, y, z), v)=R(x, y, z, v)$, $x, y, z, v \in M_{p}$. If $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal basis in M_{p}, then 2-vectors $e_{1} \wedge e_{2}, e_{1} \wedge$ $e_{3}, \ldots, e_{1} \wedge e_{n}, \ldots, e_{n-1} \wedge e_{n}$ formed a reducible orthonormal basis in $\wedge^{2}\left(M_{p}\right)$ [2].

In the sequel let $\operatorname{dim} M=4$. Let $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}$ are eigen 2 -vectors of \Re with the corresponding eigenvalues $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$. Then the matrix of \Re with respect to the reducible orthonormal 2 -vector basis $P_{1}, P_{2}, P_{3}, P_{1}^{\perp}, P_{2}^{\perp}, P_{3}^{\perp}$ in $\wedge^{2}\left(M_{p}\right)$, defined by formulas

$$
\begin{equation*}
P_{i}=\frac{\xi_{i}+\xi_{i+3}}{\sqrt{2}}, \quad P_{i}^{\perp}=\frac{\xi_{i}-\xi_{i+3}}{\sqrt{2}}, \quad i=1,2,3 \tag{5}
\end{equation*}
$$

has the form

$$
(P)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \mu_{1} & 0 & 0 \tag{6}\\
0 & \lambda_{2} & 0 & 0 & \mu_{2} & 0 \\
0 & 0 & \lambda_{3} & 0 & 0 & \mu_{3} \\
\mu_{1} & 0 & 0 & \lambda_{1} & 0 & 0 \\
0 & \mu_{2} & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & \mu_{3} & 0 & 0 & \lambda_{3}
\end{array}\right),
$$

where

$$
\begin{equation*}
\lambda_{i}=\frac{a_{i}+b_{i}}{2}, \quad \mu_{i}=\frac{a_{i}-b_{i}}{2}, \quad(i=1,2,3)[6] . \tag{7}
\end{equation*}
$$

Because of $P_{1}, P_{2}, P_{3}, P_{1}^{\perp}, P_{2}^{\perp}, P_{3}^{\perp}$ are a reducuble 2 -vectors, then there exist an orthonorlmal basis $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ of tangent vectors in M_{p}, such that [2]:
(8) $P_{1}=\eta_{1} \wedge \eta_{2}, P_{2}=\eta_{1} \wedge \eta_{3}, P_{3}=\eta_{1} \wedge \eta_{4}, P_{1}^{\perp}=\eta_{2} \wedge \eta_{3}, P_{2}^{\perp}=\eta_{2} \wedge \eta_{4}, P_{3}^{\perp}=\eta_{3} \wedge \eta_{4}$.

All these results are sumarized in
Theorem 2 [6]. Let (M, g) be a 4-dimensional Einstein-Riemannian manifold. Then at any point $p \in M$ there exist an orthonormal basis $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ in the tangent space M_{p} defined by (8), such that the matrix of the curvature operator \Re with respect to this basis has the form (6).

This basis was called Singer-Thorpe basis [5]. We can connect with any point p of an Einstein-Riemannian manifold (M, g) a Singer-Thorpe basis, so that all esentaily components of the curvature tensor R with respect to this basis can be expressed by the formulas [5]:

$$
\begin{align*}
& R_{1221}=R_{3443}=\lambda_{1}, R_{1331}=R_{2442}=\lambda_{2}, R_{1441}=R_{2332}=\lambda_{3} \\
& R_{1234}=\mu_{1}, R_{1342}=\mu_{2}, R_{1423}=\mu_{3} \tag{9}
\end{align*}
$$

Definition 2. We denote by Π_{p} the surface uniting all coordinate planes $\eta_{i} \wedge \eta_{j}$ of a Singer-Thorpe basis $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in M_{p}$, at a point p of an Einstein-Riemannian manifold (M, g).

These planes are an extremal values of the function of the sectional curvature K on M. In the sequel using these surfaces, we will obtain a generalization of the pointwise Osserman condition of the Jacobi operator R_{X}, which is defined as a symmetric endomorphism
of the tangent space M_{p}, for a tangent vector $X \in S_{p} M$, at a point p of a Riemannian manifold (M, g), by $R_{X}(u)=R(u, X, X)$ [4]. It is easy to prove that trace $R_{X}=\rho(X)$, where ρ is the Ricci tensor of M. When trace R_{X} is a pointwise function on (M, g), then according to Theorem 1 we obtain that (M, g) is an Einstein-Riemannian manifold. If (M, g) is a four-dimensional Riemannian manifold, then the characteristically equation of any Jacobi operator R_{X} can be written in the form $\left(c^{3}-J_{1} c^{2}+J_{2} c-J_{3}\right)=0$, where $J_{1}=\operatorname{trace} R_{X}$ and $J_{3}=\operatorname{det} R_{X}$. Using the characteristically matrix of R_{X} with respect to an arbitrary orthonormal basis $e_{1}, e_{2}, e_{3}, e_{4}$ in $M_{p}, p \in M$, we obtain:

$$
\begin{aligned}
& \operatorname{det} R_{a e 1+b e 2}=J_{3}\left(p ; a e_{1}+b e_{2}\right)=a^{4}\left(-2 R_{2113} R_{3114} R_{2114}+K_{12} K_{13} K_{14}-K_{12} R_{3114}^{2}\right. \\
& \left.-K_{13} R_{2114}^{2}-K_{14} R_{2113}^{2}\right)+2 a^{3} b\left(R_{2114} R_{2113}\left(R_{3124}+R_{3214}\right)-R_{2113} R_{3114} R_{1224}\right. \\
& -R_{1223} R_{3144} R_{2114}+K_{12} K_{14} R_{1332}+K_{12} K_{13} R_{1442}-K_{12}\left(R_{3124}+R_{3214}\right) R_{3114} \\
& \left.-R_{1333} R_{2114}^{2}+K_{13} R_{2114} R_{1224}+K_{14} R_{2113} R_{1223}-R_{1442} R_{2113}^{2}\right) \\
& +a^{2} b^{2}\left(K_{12} K_{13} K_{24}+4 K_{12} R_{1442}-2 R_{1224} R_{2113}\left(R_{3124}+R_{3214}\right)+K_{12} K_{14} K_{24}\right. \\
& +2 R_{1223} R_{3224} R_{2114}-2 R_{1223} R_{3114} R_{1224}-2\left(R_{3124}+R_{3214}\right) R_{1223} R_{2114}-K_{23} R_{2114}^{2} \\
& +4 R_{1332} R_{2114} R_{1224}-K_{13} R_{1224}^{2}-K_{12}\left(R_{3124}+R_{3214}\right)^{2}-2 K_{12} R_{3114} R_{3224} \\
& -K_{24} R_{2113}^{2}+4 R_{1442} R_{2113} R_{1223}-K_{14} R_{1223}^{2}+2 a b^{3}\left(K_{12} K_{23} R_{1442}+K_{12} K_{24} R_{1332}\right. \\
& -R_{2113} R_{3224} R_{1224}-R_{1224} R_{1223}\left(R_{3124}+R_{3214}\right)-R_{2114} R_{1223}\left(R_{3124}+R_{3214}\right) \\
& +K_{23} R_{2114} R_{1224}-R_{1224}^{2} R_{1332}-K_{12} R_{3224}\left(R_{3124}+R_{3214}\right)+K_{24} R_{1223} R_{2113} \\
& \left.-R_{1223}^{2} R_{1442}\right)+b^{4}\left(K_{12} K_{23} K_{24}-2 R_{1223} R_{3224} R_{1224}-K_{12} R_{3224}^{2}-K_{23} R_{1224}^{2}\right. \\
& \left.-K_{24} R_{1223}^{2}\right),
\end{aligned}
$$

for any real numbers a, b, where $a^{2}+b^{2}=1$. Analogously, after a cyclic permutation of the indices in (10), we can obtain the corresponding expressions of $\operatorname{det} R_{a e_{i}+b e_{j}}$, for any $i, j=1,2,3,4$. Using this expresions, the equations $\operatorname{det} R_{a e_{i}+b e_{j}}=0$, and (9), we prove the following

Lemma 1. Let (M, g) be a 4-dimensional Einstein-Riemannian manifold. If det $R_{X}=0$, for any tangent vector $X \in \Pi_{p}$, at any point $p \in M$, then for the invariants $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu_{1}, \mu_{2}, \mu_{3}$ of the Singer-Thorpe basis in the tangent space M_{p}, we have one of the following formulas:

$$
\begin{align*}
4 \lambda_{1} & =\tau, \text { and } \lambda_{s}=\mu_{s}=0, \text { for } s=2,3, \text { and } \mu_{1}=2 \mu_{2}=2 \mu_{3} \tag{11}\\
\lambda_{k}=\mu_{k} & =0 \text { or } \lambda_{i}-\lambda_{j}= \pm\left(\mu_{i}-\mu_{j}\right), \text { for any } i \neq j ; i, j, k=1,2,3,4 \tag{12}
\end{align*}
$$

First we will consider case (11). Using the components of the metric tensor g, with respect to an orthonormal basis $e_{1}, e_{2}, e_{3}, e_{4} \in M_{p}$, we obtain the formula

$$
\begin{align*}
R(x, y, z, u) & =\lambda_{1} \cdot\left(\left(g_{x 1} \cdot g_{y 4}-g_{x 4} \cdot g_{y 1}\right) \cdot\left(g_{z 4} \cdot g_{u 1}-g_{z 1} \cdot g_{u 4}\right)\right. \\
& \left.+\left(g_{x 2} \cdot g_{y 3}-g_{x 3} \cdot g_{y 2}\right) \cdot\left(g_{z 3} \cdot g_{u 2}-g_{z 2} \cdot g_{u 3}\right)\right) \\
& +\mu_{3} \cdot\left(\left(g_{x 1} \cdot g_{y 2}-g_{x 2} \cdot g_{y 1}\right) \cdot\left(g_{z 3} \cdot g_{u 4}-g_{z 4} \cdot g_{u 3}\right)\right. \\
& +\left(g_{x 3} \cdot g_{y 4}-g_{x 4} \cdot g_{y 3}\right) \cdot\left(g_{z 1} \cdot g_{u 2}-g_{z 2} \cdot g_{u 1}\right) \tag{13}\\
& +\left(g_{x 1} \cdot g_{y 3}-g_{x 3} \cdot g_{y 1}\right) \cdot\left(g_{z 4} \cdot g_{u 2}-g_{z 2} \cdot g_{u 4}\right) \\
& +\left(g_{x 4} \cdot g_{y 2}-g_{x 2} \cdot g_{y 4}\right) \cdot\left(g_{z 1} \cdot g_{u 3}-g_{z 3} \cdot g_{u 1}\right) \\
& -2\left(\left(g_{x 1} \cdot g_{y 4}-g_{x 4} \cdot g_{y 1}\right) \cdot\left(g_{z 2} \cdot g_{u 3}-g_{z 3} \cdot g_{u 2}\right)\right. \\
& \left.\left.+\left(g_{x 2} \cdot g_{y 3}-g_{x 3} \cdot g_{y 2}\right) \cdot\left(g_{1} \cdot g_{u 4}-g_{z 4} \cdot g_{u 1}\right)\right)\right),
\end{align*}
$$

where $x, y, z, u \in M_{p}$, at a point $p \in M$. Putting $z=e_{1}, u=e_{2}$ in (13) we get

$$
\begin{equation*}
R\left(x, y, e_{1}, e_{2}\right)=\mu_{3} \cdot\left(g_{x 3} \cdot g_{y 4}-g_{x 4} \cdot g_{y 3}\right) . \tag{14}
\end{equation*}
$$

Further we suppose that the tangent vectors $x, y, z, u, e_{1}, e_{2}, e_{3}, e_{4}$ can be continued as a smooth tangent vector fields in a neighborhoud $U_{p} \subseteq M_{p}$, so that at any point $q \in$ $U_{p}, e_{1}, e_{2}, e_{3}, e_{4}$ form a Singer-Thorpe basis in M_{q}. Using (14), and some properties of ∇ [1], we have in index form the following relation:

$$
\begin{gather*}
\nabla_{z} R_{x y 12}=\lambda_{1} \cdot \nabla_{z}\left(g_{x 4} \cdot g_{y 3}-g_{x 3} \cdot g_{y 4}\right)+\left(g_{x 3} g_{y 4}-g_{x 4} \cdot g_{y 3}\right) \cdot \nabla_{x} \lambda_{1} \\
\quad+\left(g_{z 3} \cdot g_{x 4}-g_{z 4} \cdot g_{x 3}\right) \cdot \nabla_{z} \mu_{3}+\left(g_{y 3} \cdot g_{z 4}-g_{y 4} \cdot g_{z 3}\right) \cdot \nabla_{y} \mu_{3} \\
\quad+\mu_{3}\left(g\left(\nabla_{z} y, e_{3}\right) \cdot g_{x 4}+g\left(\nabla_{z} y, e_{4}\right) \cdot g_{x 3}\right)_{+}\left(g_{x 3} \cdot g_{y 4}-g_{x 4} \cdot g_{y 3}\right) \\
-g\left(\nabla_{y} z, e_{3}\right) \cdot g_{x 4}-g\left(\nabla_{y} z, e_{4}\right) \cdot g_{x 3}-g\left(\nabla_{x} y, e_{3}\right) \cdot g_{z 4}+g\left(\nabla_{x} y, e_{4}\right) \cdot g_{z 3} \tag{15}\\
-g\left(\nabla_{x} z, e_{3}\right) \cdot g_{y 4}+g\left(\nabla_{x} z, e_{4}\right) \cdot g_{y 3}-g_{y 3} \cdot g_{z 4}+g_{y 4} \cdot g_{z 3}-g\left(\nabla_{y} x, e_{3}\right) \cdot g_{z 4} \\
\left.\quad+g\left(\nabla_{y} x, e_{4}\right) \cdot g_{z 3}-g_{z 3} \cdot g_{x 4}+g_{z 4} \cdot g_{x 3}+\nabla y\left(g_{z 4} \cdot g_{x 3}-g_{z 3} \cdot g_{x 4}\right)\right) \\
-g_{y 3}\left(g\left(\nabla_{z} x, e_{3}\right) \cdot g_{y 4}-g\left(\nabla_{z} x, e_{4}\right)\right) g_{y 3}+\nabla_{x}\left(g_{y 4} \cdot g_{z 3}-g_{y 4} \cdot g_{z 4}\right) .
\end{gather*}
$$

Since from (4) we have the equation $\sigma_{X Y Z}\left(\nabla_{X} R\right)\left(y, e_{1}, e_{2}\right)=0$, where σ is a cyclic sum over x, y, z, then using (11), (15) and putting $x=e_{3}, y=e_{4}, z=e_{1}, x=e_{3}, y=e_{4}, z=e_{1}$ we obtain
(16) $-\nabla_{e_{1}+e_{2}}\left(\mu_{3}\right)-\left(g\left(\nabla_{e_{1}} e_{4}, e_{4}\right)-g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)+g\left(\nabla_{e_{3}} e_{1}, e_{3}\right)+g\left(\nabla_{e_{4}} e_{1}, e_{4}\right)-1\right)=0$.

Here changing e_{2} by $-e_{2}$ we get a new equation:
(17) $-\nabla_{e_{1}-e_{2}}\left(\mu_{3}\right)-\left(g\left(\nabla_{e_{1}} e_{4}, e_{4}\right)-g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)+g\left(\nabla_{e_{3}} e_{1}, e_{3}\right)+g\left(\nabla_{e_{4}} e_{1}, e_{4}\right)-1\right)=0$.

From the equations (16) and (17) we have $\nabla e_{1}\left(\mu_{3}\right)=0$, and analogously we can prove that $\nabla e_{i}\left(\mu_{3}\right)=0$, for any $i=1,2,3,4$. From here and from some linear properties of the Levi-Civitta connection ∇ [1], it follows that $X\left(\mu_{3}\right)=0$, for any tangent vector $X \in U_{p}$. That means that μ_{3} is a constant on U_{p}, and now from (14) it follows directly that $\mu_{3}=0$. Hence if (11) are satisfied, we have at all

$$
\begin{equation*}
4 \lambda_{1}=\tau=\text { const }, \quad \lambda_{2}=\lambda_{3}=\mu_{1}=\mu_{2}=\mu_{3}=0 \tag{18}
\end{equation*}
$$

for the invariants of any Singer-Thorpe basis in M_{q}, at any point $q \in U_{p}$. Further using (18) we'll prove that (M, g) is a reducible space on U_{p}. On definition an n-dimensional Riemanniann manifold (M, g) is a reducible manifold on U_{p}, if there exist a coordinate system $x_{1}, x_{2}, x_{3}, x_{4}$ in U_{p}, such that the metric tensor g in U_{p} can be represented in the form $d s^{2}=\Sigma_{i=1, r} \varphi_{k}$, where φ_{k} are quadratic forms which depend on r variables, where $1<r<n$ [3]. According to this definition we have that if $\operatorname{dim} M=4$, then there are possible two types of metrics in M_{p} :

$$
\begin{gather*}
d s^{2}=\varphi_{1}\left(x_{1}\right)+\varphi_{2}\left(x_{1}, x_{2,} x_{3}\right) \tag{19}\\
d s^{2}=\varphi_{1}\left(x_{1}, x_{2}\right) \varphi_{2}\left(x_{3}, x_{4}\right) . \tag{20}
\end{gather*}
$$

If we have (18) for the invariants of Singer-Thorpe basis $e_{1}, e_{2}, e_{3}, e_{4} \in M_{q}$, at any point $q \in U_{p}, p \in M$, then we have and the following system of differential equations: $R_{i j k l, s}=0$. This system has solutions if and only if there exist a constant symmetric tensor field T of type $(0,2)$, defined on U_{p}, which satisfies a linear system $R_{i j s}^{k} \cdot T_{k t}+$ $R_{t j s}^{k} \cdot T_{i k}=0[3]$. Putting $T_{i t,[j s]}:=R_{i j s}^{k} \cdot T_{k t}+R_{t j s}^{k} \cdot T_{i k}$, we obtain such a tensor field T, 126
which has also the properties:

$$
\begin{align*}
T_{i j, k} & =0, \tag{21}\\
T_{[i, j]} & =0, \tag{22}\\
T_{i}^{k} \cdot T_{k j} & =T_{i j} . \tag{23}
\end{align*}
$$

From these properties it follows that the entries of the matrix of T, with respect to the Singer-Thorpe basis $e_{1}, e_{2}, e_{3}, e_{4} \in M_{q}$, at any point $q \in U_{p}, p \in M$, satisfy the equations $T_{i j}=0(i \neq j)$, and $T_{11}^{2}+T_{11}=T_{33}^{2}+T_{33}=0$. From here it is easy to check that rank $(T)=2$, which means that for the metric form in M_{q}, at any point $q \in U_{p}$, we have the case (20). More exactly [3]:

$$
\begin{gather*}
\varphi_{1}\left(x_{1}, x_{2}\right)=d x_{1}^{2}+\cos ^{2}\left(\sqrt{\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}+\cos ^{2}\left(\sqrt{\lambda} x_{3}\right) d x_{4}^{2} ; \lambda>0 \tag{24}\\
\varphi_{2}\left(x_{3}, x_{4}\right)=d x_{1}^{2}+\operatorname{ch}^{2}\left(\sqrt{-\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}+\operatorname{ch}^{2}\left(\sqrt{-\lambda} x_{3}\right) d x_{4}^{2} ; \lambda<0 \tag{25}
\end{gather*}
$$

Let for the invariants of Singer-Thorpe basis formulas (12) are satisfy. Then according to the well-known result of Sekigava-Vanhecke[5] we have that (M, g) must be a poinwise Osserman manifold, or (M, g) is flat, at any point of M. For this class of manifolds we have

Definition 3 [4]. A Riemannian manifold (M, g) is called a pointwise (globally) Osserman manifold if the eigenvalues of Jacobi operator R_{X} are pointwise (globally) constants functions for any $X \in S_{p} M$, at any point $p \in M$.

The example for a pointwise Osserman manifold which is not globally Osserman manifold was given in [4]. It is a Riemannian manifold (M, g) for which there exist a Clifford module structure J_{1}, \ldots, J_{k} in the tangent space M_{p}, at any point $p \in M$. From this example, by $k=1$, we obtain a subexample when any Jacoby operator R_{X} has two zero and two non-zero eigenvalues.

Now all our result above we can summarize in the main result
Theorem 3. Let (M, g) be a four-dimensional Einstein-Riemannian manifold. Then det $R_{X}=0$, for any tangent vector $X \in \Pi_{p}$, at any point $p \in M$, if and only if or (M, g) is a pointwise Osserman manifold, or (M, g) is a 4-dimensional reducible space with the metrics defined by (20), (24) and (25), on some neighborhoud U_{p}, at any point $p \in M$.

In the end of the paper we remark that the converse result of Theorem 3 is also true, but we do not prove it because it is trivial.

REFERENCES

[1] Гр. Станилов. Диференциална геометрия. София, Наука и изкуство, 1988.
[2] А. МАльцев. Основы линейной алгебры. Наука, Москва, 1970.
[3] П.Широков. Симетрические конформно-евклидовы пространства. Изв. Казанск. физ.мат. об-ва, сер. 3 (1938), 11.
[4] P. Gilkey, A. Swann, L. Vanheke. Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford (1995), 299-320.
[5] K. Sekigawa, L. Vanhecke. Volume preserving geodesic symmetries in four-dimensional 2-stein spaces. Kodai. Math J., 9 (1986), 215-223.
[6] I. Singer, J. Thorpe. The curvature of 4-dimensional Einstein spaces. Global Analisys. Papers in Honour of K. Kodaira. University of Tokio press, Princeton University Press, 1969, 354-365.

Julian Tzankov Tzankov
Faculty of Mathematics and Informatics Department of Geometry Sofia University "St. Kl. Ohridski" 5, James Baucher Blvd. 1164 Sofia, Bulgaria,
e-mail: ucankov@fmi.uni-sofia.bg
Maria Valkova Stoeva
Technical College, Trakia University
38, Graph Ignatiev Str.
Yambol, Bulgaria
e-mail: yacol@descom.com

Veselin Totev Videv
Department of Mathematics and Physics
Trakia University
Students town
6000 Stara Zagora
Bulgaria
e-mail: videv@uni-sz.bg

ХАРАКТЕРИЗИРАНЕ НА ЧЕТИРИМЕРНИ АЙНЩАЙНОВИ РИМАНОВИ МНОГООБРАЗИЯ ЧРЕЗ ИЗРОДЕН ОПЕРАТОР НА ЯКОБИ И БАЗИСИ НА СИНГЕР-ТОРП

Веселин Т. Видев, Юлиан Ц. Цанков, Мария В. Стоева

Abstract

В представената статия характеризираме тези класове четиримерни Айнщайнови-Риманови многообразия за които детерминантата на оператора на Якоби R_{X} е равна на нула във всяка точка от многообразието и за всеки допирателен вектор X принадлежащ на координатна равнина на базис на Сингер-Торп.

