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In the present short note we charactreize these classes of a four-dimensional Einstein-
Riemannian manifolds, for which the determinant of Jacobi operator RX is equal to
zero at any point of the manifold, and for any tangent vector X, which belongs to
one of the coordinate planes spanned from a basis of Singer-Thorpe.

Let (M, g) be an n-dimensional Riemannian manifolds with metric tensor g, let Mp

be the tangent space at a point p ∈ M, and let SpM be the set of all unit tangent vectors
in Mp. If ∇ is the Levi-Civita connection of M , then R is the curvature tensor defined
by R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ], for any tangent vectors X, Y ∈ Mp, where p ∈ M.

Let ρ(x, y) be the Ricci bilinear function defined by ρ(x, y) = trace (u → R(u, x, y)), for
any x, y ∈ Mp, p ∈ M, let ρ be the corresponding Ricci operator defined by g(ρ(x), y) =
ρ(x, y), and let τ be the trace of ρ which is called scalar curvature on M [1]. It is well-
known the following

Theorem 1[1]. Let (M, g) be an n-dimensional (n ≥ 3) Riemannian smooth manifold
such that the Ricci curvature ρ(X, X) does not depend on any tangent vector X ∈ SpM,

at any point p ∈ M . Then

(1) ρ(X, X) = λ, where λ is a constant on M.

Definition 1 [6]. Any Riemannian manifold (M, g) with property (1), is called
Einstien-Riemannian manifold, such that

(2) ρ(X, Y ) = λg(X, Y ), for any tangent vectors X, Y ∈ Mp, at any point p ∈ M.

It is well-known that the corresponding curvature tensor of type (0,4) has the following
algebraic properties [1]:

(3)
R(x, y, z, u) = −R(y, x, z, u),
R(x, y, z, u) = −R(x, y, u, z),

R(x, y, z, u) + R(y, z, x, u) + R(z, x, y, u) = 0 − first Bianchi identity.

Also R satisfies the second differentially Bianchi identity [1]:

(4) σxyz(∇xR)(y, z, u) = 0,

123



where σ is a cyclic sum over x, y, z. Let ∧2(Mp) be a 2-vector space over Mp with standard

metric [2]:
∧

g (v1 ∧ v2, w1 ∧ w2) = det (g (vi, wj) ) (v1, v2, w1, w2 ∈ Mp) and with curva-

ture operator ℜ defined by [2]:
∧

g (ℜ (x ∧ y) , z ∧ v) = g (R (x, y, z) , v) = R (x, y, z, v) ,

x, y, z, v ∈ Mp. If e1, e2, . . . , en is an orthonormal basis in Mp, then 2-vectors e1∧ e2, e1∧
e3, . . . , e1 ∧ en, . . . , en−1 ∧ en formed a reducible orthonormal basis in ∧2(Mp) [2].

In the sequel let dim M = 4. Let ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 are eigen 2-vectors of ℜ with
the corresponding eigenvalues a1, a2, a3, a4, a5, a6. Then the matrix of ℜ with respect to
the reducible orthonormal 2-vector basis P1, P2, P3, P

⊥
1 , P⊥

2 , P⊥
3 in ∧2(Mp), defined by

formulas

(5) Pi =
ξi + ξi+3√

2
, P⊥

i =
ξi − ξi+3√

2
, i = 1, 2, 3,

has the form

(6) (P ) =

















λ1 0 0 µ1 0 0
0 λ2 0 0 µ2 0
0 0 λ3 0 0 µ3

µ1 0 0 λ1 0 0
0 µ2 0 0 λ2 0
0 0 µ3 0 0 λ3

















,

where

(7) λi =
ai + bi

2
, µi =

ai − bi

2
, (i = 1, 2, 3) [6] .

Because of P1, P2, P3, P
⊥
1 , P⊥

2 , P⊥
3 are a reducuble 2-vectors, then there exist an or-

thonorlmal basis η1, η2, η3, η4 of tangent vectors in Mp, such that [2]:

(8) P1 = η1 ∧ η2, P2 = η1 ∧ η3, P3 = η1 ∧ η4, P
⊥

1 = η2 ∧ η3, P
⊥

2 = η2 ∧ η4, P
⊥

3 = η3 ∧ η4.

All these results are sumarized in

Theorem 2 [6]. Let (M, g) be a 4-dimensional Einstein-Riemannian manifold. Then
at any point p ∈ M there exist an orthonormal basis η1, η2, η3, η4 in the tangent space
Mp defined by (8), such that the matrix of the curvature operator ℜ with respect to this
basis has the form (6).

This basis was called Singer-Thorpe basis [5]. We can connect with any point p

of an Einstein-Riemannian manifold (M, g) a Singer-Thorpe basis, so that all esentaily
components of the curvature tensor R with respect to this basis can be expressed by the
formulas [5]:

(9)
R1221 = R3443 = λ1, R1331 = R2442 = λ2, R1441 = R2332 = λ3,

R1234 = µ1, R1342 = µ2, R1423 = µ3.

Definition 2. We denote by Πp the surface uniting all coordinate planes ηi ∧ ηj of a
Singer-Thorpe basis η1, η2, η3, η4 ∈ Mp, at a point p of an Einstein-Riemannian manifold
(M, g).

These planes are an extremal values of the function of the sectional curvature K on M.

In the sequel using these surfaces, we will obtain a generalization of the pointwise Osser-
man condition of the Jacobi operator RX , which is defined as a symmetric endomorphism
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of the tangent space Mp, for a tangent vector X ∈ SpM, at a point p of a Riemannian
manifold (M, g), by RX(u) = R(u, X, X) [4]. It is easy to prove that trace RX = ρ(X),
where ρ is the Ricci tensor of M . When trace RX is a pointwise function on (M, g), then
according to Theorem 1 we obtain that (M, g) is an Einstein-Riemannian manifold. If
(M, g) is a four-dimensional Riemannian manifold, then the characteristically equation
of any Jacobi operator RX can be written in the form (c3 − J1c

2 + J2c− J3) = 0, where
J1 = traceRX and J3 = detRX . Using the characteristically matrix of RX with respect
to an arbitrary orthonormal basis e1, e2, e3, e4 in Mp, p ∈ M, we obtain:

(10)

detRae1+be2 = J3(p; ae1+be2) = a4(−2R2113R3114R2114+K12K13K14−K12R
2
3114

−K13R
2
2114−K14R

2
2113) + 2a3b(R2114R2113(R3124 + R3214) − R2113R3114R1224

−R1223R3114R2114 + K12K14R1332+K12K13R1442−K12(R3124 + R3214)R3114

−R1332R
2
2114 + K13R2114R1224 + K14R2113R1223−R1442R

2
2113)

+a2b2(K12K13K24 + 4K12R1442−2R1224R2113(R3124+R3214) + K12K14K24

+2R1223R3224R2114 − 2R1223R3114R1224 − 2(R3124 + R3214)R1223R2114 − K23R
2
2114

+4R1332R2114R1224 − K13R
2
1224 − K12(R3124+R3214)

2 − 2K12R3114R3224

−K24R
2
2113 + 4R1442R2113R1223−K14R

2
1223) + 2ab3(K12K23R1442+K12K24R1332

−R2113R3224R1224 − R1224R1223(R3124 + R3214) − R2114R1223(R3124 + R3214)
+K23R2114R1224 − R2

1224R1332 − K12R3224(R3124 + R3214) + K24R1223R2113

−R2
1223R1442) + b4(K12K23K24−2R1223R3224R1224 − K12R

2
3224 − K23R

2
1224

−K24R
2
1223),

for any real numbers a, b, where a2+b2 = 1. Analogously, after a cyclic permutation of
the indices in (10), we can obtain the corresponding expressions of detRaei+bej

, for any
i, j = 1, 2, 3, 4. Using this expresions, the equations detRaei+bej

= 0, and (9), we prove
the following

Lemma 1. Let (M, g) be a 4-dimensional Einstein-Riemannian manifold. If det
RX = 0, for any tangent vector X ∈ Πp, at any point p ∈ M, then for the invari-
ants λ1, λ2, λ3, µ1, µ2, µ3 of the Singer-Thorpe basis in the tangent space Mp, we have
one of the following formulas:

(11) 4λ1 = τ, and λs = µs = 0, for s = 2, 3, and µ1 = 2µ2 = 2µ3;

(12) λk = µk = 0 or λi − λj = ±(µi − µj), for any i 6= j; i, j, k = 1, 2, 3, 4.

First we will consider case (11). Using the components of the metric tensor g, with
respect to an orthonormal basis e1, e2, e3, e4 ∈ Mp, we obtain the formula

(13)

R(x, y, z, u) = λ1.
(

(gx1.gy4 − gx4.gy1).(gz4.gu1 − gz1.gu4)

+(gx2.gy3 − gx3.gy2).(gz3.gu2 − gz2.gu3)
)

+µ3.
(

(gx1.gy2 − gx2.gy1).(gz3.gu4 − gz4.gu3)

+(gx3.gy4 − gx4.gy3).(gz1.gu2 − gz2.gu1)
+(gx1.gy3 − gx3.gy1).(gz4.gu2 − gz2.gu4)
+(gx4.gy2 − gx2.gy4).(gz1.gu3 − gz3.gu1)
−2((gx1.gy4−gx4.gy1).(gz2.gu3 − gz3.gu2)

+(gx2.gy3−gx3.gy2).(g1.gu4−gz4.gu1))
)

,
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where x, y, z, u ∈ Mp, at a point p ∈ M. Putting z = e1, u = e2 in (13) we get

(14) R(x, y, e1, e2) = µ3.(gx3.gy4−gx4.gy3).

Further we suppose that the tangent vectors x, y, z, u, e1, e2, e3, e4 can be continued as
a smooth tangent vector fields in a neighborhoud Up ⊆ Mp, so that at any point q ∈
Up, e1, e2, e3, e4 form a Singer-Thorpe basis in Mq. Using (14), and some properties of ∇
[1], we have in index form the following relation:

(15)

∇zRxy12 = λ1.∇z(gx4.gy3 − gx3.gy4) + (gx3gy4 − gx4.gy3).∇xλ1

+(gz3.gx4−gz4.gx3).∇zµ3 + (gy3.gz4 − gy4.gz3).∇yµ3

+µ3

(

g(∇zy, e3).gx4 + g(∇zy, e4).gx3)+(gx3.gy4−gx4.gy3)

−g(∇yz, e3).gx4 − g(∇yz, e4).gx3 − g(∇xy, e3).gz4 + g(∇xy, e4).gz3

−g(∇xz, e3).gy4 + g(∇xz, e4).gy3 − gy3.gz4 + gy4.gz3 − g(∇yx, e3).gz4

+g(∇yx, e4).gz3 − gz3.gx4 + gz4.gx3 + ∇y(gz4.gx3−gz3.gx4)
)

−gy3

(

g(∇zx, e3).gy4 − g(∇zx, e4)
)

gy3 + ∇x(gy4.gz3 − gy4.gz4).

Since from (4) we have the equation σXY Z(∇XR)(y, e1, e2) = 0, where σ is a cyclic sum
over x, y, z, then using (11), (15) and putting x = e3, y = e4, z = e1, x = e3, y = e4, z = e1

we obtain

(16) −∇e1+e2
(µ3)− (g(∇e1

e4, e4)− g(∇e1
e3, e3) + g(∇e3

e1, e3) + g(∇e4
e1, e4)− 1) = 0.

Here changing e2 by −e2 we get a new equation:

(17) −∇e1−e2
(µ3)− (g(∇e1

e4, e4)− g(∇e1
e3, e3) + g(∇e3

e1, e3) + g(∇e4
e1, e4)− 1) = 0.

From the equations (16) and (17) we have ∇e1(µ3) = 0, and analogously we can prove
that ∇ei(µ3) = 0, for any i = 1, 2, 3, 4. From here and from some linear properties of
the Levi-Civitta connection ∇ [1], it follows that X(µ3) = 0, for any tangent vector
X ∈ Up. That means that µ3 is a constant on Up, and now from (14) it follows directly
that µ3 = 0. Hence if (11) are satisfied, we have at all

(18) 4λ1 = τ = const, λ2 = λ3 = µ1 = µ2 = µ3 = 0,

for the invariants of any Singer-Thorpe basis in Mq, at any point q ∈ Up. Further using
(18) we‘ll prove that (M, g) is a reducible space on Up. On definition an n-dimensional
Riemanniann manifold (M, g) is a reducible manifold on Up, if there exist a coordinate
system x1, x2, x3, x4 in Up, such that the metric tensor g in Up can be represented in the
form ds2 = Σi=1,rϕk, where ϕk are quadratic forms which depend on r variables, where
1 < r < n [3]. According to this definition we have that if dim M = 4, then there are
possible two types of metrics in Mp:

(19) ds2 = ϕ1(x1) + ϕ2(x1, x2,x3),

(20) ds2 = ϕ1(x1, x2)ϕ2(x3, x4).

If we have (18) for the invariants of Singer-Thorpe basis e1, e2, e3, e4 ∈ Mq, at any
point q ∈ Up, p ∈ M, then we have and the following system of differential equations:
Rijkl,s = 0. This system has solutions if and only if there exist a constant symmetric
tensor field T of type (0, 2), defined on Up, which satisfies a linear system Rk

ijs.Tkt +

Rk
tjs.Tik = 0 [3]. Putting Tit,[js] := Rk

ijs.Tkt + Rk
tjs.Tik, we obtain such a tensor field T,
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which has also the properties:

(21) Tij,k = 0,

(22) T[i,j] = 0,

(23) T k
i .Tkj = Tij .

From these properties it follows that the entries of the matrix of T, with respect to the
Singer-Thorpe basis e1, e2, e3, e4 ∈ Mq, at any point q ∈ Up, p ∈ M , satisfy the equations
Tij = 0 (i 6= j), and T 2

11 + T11 = T 2
33 + T33 = 0. From here it is easy to check that rank

(T ) = 2, which means that for the metric form in Mq, at any point q ∈ Up, we have the
case (20). More exactly [3]:

(24) ϕ1(x1, x2) = dx2
1 + cos2

(√
λx1

)

dx2
2 + dx2

3 + cos2
(√

λx3

)

dx2
4; λ > 0;

(25) ϕ2(x3, x4) = dx2
1 + ch2

(√
−λx1

)

dx2
2 + dx2

3 + ch2
(√

−λx3

)

dx2
4; λ < 0.

Let for the invariants of Singer-Thorpe basis formulas (12) are satisfy. Then according
to the well-known result of Sekigava-Vanhecke[5] we have that (M, g) must be a poinwise
Osserman manifold, or (M, g) is flat, at any point of M. For this class of manifolds we
have

Definition 3 [4]. A Riemannian manifold (M, g) is called a pointwise (globally) Os-
serman manifold if the eigenvalues of Jacobi operator RX are pointwise (globally) con-
stants functions for any X ∈ SpM, at any point p ∈ M.

The example for a pointwise Osserman manifold which is not globally Osserman
manifold was given in [4]. It is a Riemannian manifold (M, g) for which there exist a
Clifford module structure J1, . . . , Jk in the tangent space Mp, at any point p ∈ M. From
this example, by k = 1, we obtain a subexample when any Jacoby operator RX has two
zero and two non-zero eigenvalues.

Now all our result above we can summarize in the main result

Theorem 3. Let (M, g) be a four-dimensional Einstein-Riemannian manifold. Then
det RX = 0, for any tangent vector X ∈ Πp, at any point p ∈ M, if and only if or (M, g)
is a pointwise Osserman manifold, or (M, g) is a 4-dimensional reducible space with the
metrics defined by (20), (24) and (25), on some neighborhoud Up, at any point p ∈ M.

In the end of the paper we remark that the converse result of Theorem 3 is also true,
but we do not prove it because it is trivial.
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ХАРАКТЕРИЗИРАНЕ НА ЧЕТИРИМЕРНИ АЙНЩАЙНОВИ
РИМАНОВИ МНОГООБРАЗИЯ ЧРЕЗ ИЗРОДЕН ОПЕРАТОР НА

ЯКОБИ И БАЗИСИ НА СИНГЕР-ТОРП

Веселин Т. Видев, Юлиан Ц. Цанков, Мария В. Стоева

В представената статия характеризираме тези класове четиримерни
Айнщайнови-Риманови многообразия за които детерминантата на операто-
ра на Якоби RX е равна на нула във всяка точка от многообразието и за
всеки допирателен вектор X принадлежащ на координатна равнина на базис на
Сингер-Торп.
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