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In the present short note we charactreize these classes of a four-dimensional Einstein-
Riemannian manifolds, for which the determinant of Jacobi operator Rx is equal to
zero at any point of the manifold, and for any tangent vector X, which belongs to
one of the coordinate planes spanned from a basis of Singer-Thorpe.

Let (M, g) be an n-dimensional Riemannian manifolds with metric tensor g, let M,
be the tangent space at a point p € M, and let S, M be the set of all unit tangent vectors
in Mp. If V is the Levi-Civita connection of M, then R is the curvature tensor defined
by R(X,Y) = [Vx,Vy]| — Vixy], for any tangent vectors X,Y € M, where p € M.
Let p(z,y) be the Ricci bilinear function defined by p(x,y) = trace (u — R(u,z,y)), for
any ,y € My, p € M, let p be the corresponding Ricci operator defined by g(p(x),y) =
p(z,y), and let 7 be the trace of p which is called scalar curvature on M|[1]. It is well-
known the following

Theorem 1[1]. Let (M, g) be an n-dimensional (n > 3) Riemannian smooth manifold
such that the Ricci curvature p(X, X) does not depend on any tangent vector X € S, M,
at any point p € M. Then

(1) p(X,X) =\ where X is a constant on M.

Definition 1 [6]. Any Riemannian manifold (M,g) with property (1), is called
Einstien- Riemannian manifold, such that

(2)  p(X,)Y)=X(X,Y), for any tangent vectors X,Y € M,, at any point p € M.

It is well-known that the corresponding curvature tensor of type (0,4) has the following
algebraic properties [1]:
R(Za Y, 2, U) = 7R(y7 z,z, u)a
(3) R(Iay7z7u):_R(may7uaZ)a
R(z,y,z,u) + R(y,z,x,u) + R(z,x,y,u) = 0 — first Bianchi identity.
Also R satisfies the second differentially Bianchi identity [1]:
(4) Oryz(VaR)(y, 2,u) = 0,
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where ¢ is a cyclic sum over x, ¥, z. Let A2 (M,,) be a 2-vector space over M), with standard
AN
metric [2]: 9 (v1 A v, w1 Aws) = det (g (vs,w;)) (vi, ve, w1, we € Mp) and with curva-

ture operator R defined by [2]: 6(% (xAy),zAv)=g(R(z,y,2),v) = R(z,y,2,v),
x,Y,2,v € My,. If er,eq,..., ey, is an orthonormal basis in M), then 2-vectors e; Aea, e A
es,...,e1 ANen,...,en_1 A e, formed a reducible orthonormal basis in A2 (Mp) [2].

In the sequel let dim M = 4. Let &1,&2,&3,84,&5,& are eigen 2-vectors of & with
the corresponding eigenvalues a1, as, as, a4, a5, ag. Then the matrix of & with respect to
the reducible orthonormal 2-vector basis Py, P2, P3, Pi-, Ps-, P3- in A?(M,,), defined by
formulas

_ &it&its pl_ §i —&it3
V2ot V2

)\1 0 0 M1 0 0
0 )\2 0 0 125 0
o0 A 0 0 ps
0 U2 0 0 )\2 0
0 0 U3 0 0 )\3

(5) P, i=1,2,3,

has the form

where

(™) A= !

5 Hi = ) (1:172a3) [6]

Because of Py, P, P3, Pit, Ps-, Pi- are a reducuble 2-vectors, then there exist an or-
thonorlmal basis 71, 12, 113, 74 of tangent vectors in My, such that [2]:

(8) Pr=m1 Ana, Po=m1 Ans, Py =11 Ama, Pl =2 Az, Ps- = ma A, P& =13 Ana.

All these results are sumarized in

Theorem 2 [6]. Let (M, g) be a 4-dimensional Einstein-Riemannian manifold. Then
at any point p € M there exist an orthonormal basis 1n1,7m2,7m3,1n4 in the tangent space
M, defined by (8), such that the matric of the curvature operator R with respect to this
basis has the form (6).

This basis was called Singer-Thorpe basis [5]. We can connect with any point p
of an Einstein-Riemannian manifold (M, g) a Singer-Thorpe basis, so that all esentaily
components of the curvature tensor R with respect to this basis can be expressed by the
formulas [5]:

Ri221 = Raaa3 = A1, Ri331 = Roaaz = A2, Riaa1 = Razzz = A3,
©) Ruzss = i1, Rizso = o, Riaos =
1234 = M1, {01342 = U2, 111423 = U3

Definition 2. We denote by 11, the surface uniting all coordinate planes n; An; of a
Singer-Thorpe basis 11,12,M3,Ma € Mp, at a point p of an Einstein- Riemannian manifold
(M, g).

These planes are an extremal values of the function of the sectional curvature K on M.
In the sequel using these surfaces, we will obtain a generalization of the pointwise Osser-
man condition of the Jacobi operator Ry, which is defined as a symmetric endomorphism
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of the tangent space M, for a tangent vector X € S, M, at a point p of a Riemannian
manifold (M, g), by Rx(u) = R(u, X, X) [4]. It is easy to prove that trace Rx = p(X),
where p is the Ricci tensor of M. When trace Rx is a pointwise function on (M, g), then
according to Theorem 1 we obtain that (M, g) is an Einstein-Riemannian manifold. If
(M, g) is a four-dimensional Riemannian manifold, then the characteristically equation
of any Jacobi operator Rx can be written in the form (¢3 — Jic? + Joc — J3) = 0, where
J1 = traceRx and J3 = det Rx. Using the characteristically matrix of Rx with respect
to an arbitrary orthonormal basis ey, e, e3,e4 in My, p € M, we obtain:

det Rye14be2 = J3(p; aer1+bes) = a*(—2Ra113R3114 Ro114+ K12 K13 K14—K12R3 14
—K13R3,1,—K14R3,13) + 2a3b(R2114 Ro113(R3124 + Rs214) — Ro113R3114 R1224
—Ri223R3114Ro114 + K12 K14 R1330+ K 12 K13 R1442— K 12(R3124 + R3214)R3114
—Ri330R31 14 + K13Ro114R1224 + K14 Ro113R1203— R1442R3113)
+a?b?(K12K13Ka4 + 4K12R1442—2R1224 R2113(R3124+ Ra214) + K12 K14 K24
+2R1293R3204 Ro114 — 2R1223 R3114 R1224 — 2(R3124 + R3214) R1223Ro114 — Ko3 R34
+4R1330Ro114R1204 — K13R350, — K12(R3124+ R3214)* — 2K12R3114 R3204

— K24 R3115 + 4R14a2Ro113 R1223 — K14 R3903) + 2ab3 (K12 Ka3 Riga2+ K12 K4 R1332
—Ro113R3224 R1224 — Ri224R1223(R3124 + R3214) — Ro114R1223(R3124 + R3214)
+KosRo114R1204 — R350, R332 — K12 R3204(R3124 + Ra3214) + KoaR1203Ro113
—R3go3R1442) 4 b* (K12 K23 K24 —2R1223 R3224 R1224 — K12 R350, — KasRi5y,
—KoaRiz3),

for any real numbers a, b, where a2+b? = 1. Analogously, after a cyclic permutation of

the indices in (10), we can obtain the corresponding expressions of det Rae, +be;, for any
i,j = 1,2,3,4. Using this expresions, the equations det Re,1te; = 0, and (9), we prove
the following

(10)

Lemma 1. Let (M,g) be a 4-dimensional Einstein-Riemannian manifold. If det
Rx = 0, for any tangent vector X € 1l,, at any point p € M, then for the invari-
ants A1, A2, A3, 1, p2, ps of the Singer-Thorpe basis in the tangent space My, we have
one of the following formulas:

(11) AM\1 =71, and As = pus =0, for s =2,3, and p1 = 2us = 2us;
12 M =pr=0o0r N\; — X; = £(u; — py), for any i # j; i,5,k=1,2,3,4.
j j

First we will consider case (11). Using the components of the metric tensor g, with
respect to an orthonormal basis eq, ez, e3,e4 € My, we obtain the formula

R(l‘, Y, z, ’ZL) = )\1~ ((gzlgy4 - gz4-gy1)-(gz4~gu1 - gzl-gu4)
+(gw2'gy3 - gw3-9y2)'(gz3-gu2 - gz2-gu3)>

+ 3. ((gx1-gy2 - ng-gyl)-(gz3-gu4 — §24-Gu3)
(13) +(923-9ya — 924-9y3)-(921-Gu2 — G22-9u1)
+(ga1-9y3 — 923-9y1)-(924-Gu2 — 922-Gua)
+(gua-9y2 — 9o2-9ya)-(921-Gus — 923-Gu1)
—2((921-9y1—9za-941)-(922-9u3 — 923-9u2)
+(gaz2'gy37.ga;3'gy2)'(g1'gu47gz4'gu1)) )
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where z,y,z,u € M,, at a point p € M. Putting z = e1,u = ez in (13) we get

(14) R(z,y,e1,e2) = p3-(9e3-9ya—9ra-9y3)-

Further we suppose that the tangent vectors z,v, 2z, u, e1, €2, €3, e4 can be continued as
a smooth tangent vector fields in a neighborhoud U, C M, so that at any point ¢ €
Up, €1, €2, e3, e4 form a Singer-Thorpe basis in M. Using (14), and some properties of V
[1], we have in index form the following relation:

V.Ruy12 = M.V (gra-9y3 — 9o3-Gya) + (9239ya — 9ua-9y3)-Vai
+(923-924—924-923)-Vhiz + (9y3-924 — Gya-9.3)-Vyliz
+h3 (g(Vz% e3)-9za + 9(V2y, €4).923)+ (923-9ya—94-9y3)
(15) —9(Vyz,€3).904 — 9(Vyz,€4).903 — 9(Vay, €3).gza + 9(Vay, €4).923
—9(Vaz,e3).9ya + 9(Vaz,€4).9y3 — 9y3-924 + gya-gz3 — 9(Vyx,€3).924
+9(Vyz,€4).9:3 — 923924 + 924923 + VY(924.923—9.3-94)

—9Jy3 (g(vzfﬂ, e3).gya — 9(V.x, 64))9y3 + Vo (9ya.923 — 9ya-9,4)-

Since from (4) we have the equation oxyz(VxR)(y,e1,e2) = 0, where o is a cyclic sum
over x,y, z, then using (11), (15) and putting © = e3,y = e4,2 = e1,& = €3,y = e4,2 = €1
we obtain

(16) —Ve,4es(13) = (9(Ve,ea,€4) = g(Veyes,€3) + g(Vesen, e3) +9(Veser,e4) —1) = 0.
Here changing e; by —es we get a new equation:

(17) 7V€1*€2 (,LL3) - (g(v6164a 64) - g(v6163a 63) + g(vezela 63) + g(v6461a 64) - 1) =0.
From the equations (16) and (17) we have Ve (us) = 0, and analogously we can prove
that Ve;(us) = 0, for any ¢ = 1,2,3,4. From here and from some linear properties of
the Levi-Civitta connection V [1], it follows that X (us) = 0, for any tangent vector
X € U,. That means that p3 is a constant on U,, and now from (14) it follows directly
that ps = 0. Hence if (11) are satisfied, we have at all

(18) 4\ =7 =const, Ao=A3=p1 =ps=p3=0,

for the invariants of any Singer-Thorpe basis in My, at any point ¢ € U,. Further using
(18) we'll prove that (M, g) is a reducible space on Up. On definition an n-dimensional
Riemanniann manifold (M, g) is a reducible manifold on Uy, if there exist a coordinate
system x1, T2, T3, T4 in Uy, such that the metric tensor g in U, can be represented in the
form ds? = ;1 ., where @, are quadratic forms which depend on r variables, where
1 < r < n [3]. According to this definition we have that if dim M = 4, then there are
possible two types of metrics in Mp:

(19) ds® = p1(21) + a(w1, 32,23),
(20) ds* = 1 (x1, 22)pa (23, T4).

If we have (18) for the invariants of Singer-Thorpe basis e1, ez, e3,e4 € My, at any
point ¢ € Up,p € M, then we have and the following system of differential equations:
Rijii,s = 0. This system has solutions if and only if there exist a constant symmetric
tensor field T of type (0,2), defined on U,, which satisfies a linear system Rfjs.Tkt +
Rfjs.Tik = 0 [3]. Putting T} ;4 := RZS.TM + Rfjs.Tik, we obtain such a tensor field T,
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which has also the properties:

(21) Ty =0,
(22) Tiij) = 0,
(23) TF Ty =Ty

From these properties it follows that the entries of the matrix of T', with respect to the
Singer-Thorpe basis ey, ez, e3, e4 € My, at any point g € Uy, p € M, satisfy the equations
Ti; =0 (i # j), and T3 + T11 = T3 + T33 = 0. From here it is easy to check that rank
(T') = 2, which means that for the metric form in M,, at any point ¢ € U, we have the
case (20). More exactly [3]:

(24) o1(x1, ) = dz? + cos® (\/Xscl) dx3 + dx? + cos? (\/X’Jlgg) dz3; A > 0;

(25) ©a(x3, 24) = da? + ch? (\/7)\:01> dr? + dz? + ch? (vf)\ac3> dax3; X < 0.

Let for the invariants of Singer-Thorpe basis formulas (12) are satisfy. Then according
to the well-known result of Sekigava-Vanhecke[5] we have that (M, g) must be a poinwise
Osserman manifold, or (M, g) is flat, at any point of M. For this class of manifolds we
have

Definition 3 [4]. A Riemannian manifold (M, g) is called a pointwise (globally) Os-
serman manifold if the eigenvalues of Jacobi operator Rx are pointwise (globally) con-
stants functions for any X € SpM, at any point p € M.

The example for a pointwise Osserman manifold which is not globally Osserman
manifold was given in [4]. It is a Riemannian manifold (M, g) for which there exist a
Clifford module structure Jy, ..., Ji in the tangent space M, at any point p € M. From
this example, by £ = 1, we obtain a subexample when any Jacoby operator Rx has two
zero and two non-zero eigenvalues.

Now all our result above we can summarize in the main result

Theorem 3. Let (M, g) be a four-dimensional Einstein-Riemannian manifold. Then
det Rx =0, for any tangent vector X € II,, at any point p € M, if and only if or (M, g)
is a pointwise Osserman manifold, or (M, g) is a 4-dimensional reducible space with the
metrics defined by (20), (24) and (25), on some neighborhoud Uy, at any point p € M.

In the end of the paper we remark that the converse result of Theorem 3 is also true,
but we do not prove it because it is trivial.
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XAPAKTEPU3UPAHE HA YETUPUMEPHU AMHIITAMTHOBU
PVUMAHOBU MHOI'OOBPA3MAd YPE3 N3PO/JIEH OIIEPATOP HA
AKOBUM 11 BA3CU HA CUHI'EP-TOPII

Becenun T. Buaes, FOauan II. Ilankos, Mapusa B. CroeBa

B npeacraBenara crarms  xapakTepu3mpaMe Te3M  KJIAaCOBE  Ye€THPHMEDHHU
AiamaiinoBu-PumanoBu MHOroobpasmsi 3a KOHTO JeTEePMHHAHTATa Ha OIEpaTO-
pa Ha fkobu Rx e paBHa Ha HyJla BbB BCfAKA TOYKa OT MHOrOOOpasmMeTo U 3a
BCEKHM JIOIHpaTesieH BeKTOp X IpUHAa/JIeKall Ha KOOPJIWHATHA PaBHUHA Ha Oa3uc Ha
Cunrep-Topir.
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