THE LINEAR PROGRAMMING BOUND FOR TERNARY AND QUATERNARY LINEAR CODES*

Rumen Daskalov, Elena Daskalova

The linear programming bound for ternary and quaternary linear codes of word length between 201 and 250 is determined.

1. Introduction. Let $G F(q)$ denote the Galois field of q elements, and let $V(n, q)$ denote the vector space of all ordered n-tuples over $G F(q)$. A linear code C of length n and dimension k over $G F(q)$ is a k-dimensional subspace of $V(n, q)$. Such a code is called $[n, k, d]_{q}$-code if its minimum Hamming distance is d.

A fundamental problem in coding theory is that of optimizing one of the parameters n, k and d for given values of the other two. Two versions are:

Problem 1. Find $d_{q}(n, k)$, the largest value of d for which there exist an $[n, k, d]_{q}$-code.

Problem 2. Find $n_{q}(k, d)$, the smallest value of n for which there exist an $[n, k, d]_{q}$-code.

Many upper bounds for $d_{3}(n, k)$ and $d_{4}(n, k)$ are determined in [2-9]. All of the results obtained in these papers are included in Brouwers online tables [1]. We continue these investigations for word lenght between 201 and 250.
2. Preliminary results. The Hamming weight of a vector x, denoted by $w t(x)$, is the number of nonzero entries in x. For a linear code, the minimum distance is equal to the smallest of the weights of the nonzero codewords.

Let G be a generator matrix of an $[n, k, d]_{q}$-code C.
Definition. The residual code of C with respect to $c \in C$ is the code generated by the restriction of G to the columns where c has a zero. The residual code of C with respect to $c \in C$ is denoted by $\operatorname{Res}(C, c)$ or $\operatorname{Res}(C, w)$ if the Hamming weight of c is w.

Definition. The dual code C^{\perp} of C is the set of words of length n that are orthogonal to all codewords in C, w.r.t. the ordinary inner product.

Lemma 1 (the MacWilliams' identities (cf. [12]). Suppose that linear code $C=$ $[n, k, d]_{q}$ and its dual code C^{\perp} have weight enumerators $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}(0 \leq i \leq n)$, respectively. Then:

$$
\sum_{i=0}^{n} K_{t}(i) \cdot A_{i}=q^{k} B_{t} \quad \text { for } \quad t=0,1, \ldots, n
$$

[^0]where
$$
K_{t}(i)=\sum_{j=0}^{t}(-1)^{j}\binom{n-i}{t-j}\binom{i}{j}(q-1)^{t-j}
$$
are the Krawtchouk polinomials of degree t.
Lemma 2 [11]. For an $[n, k, d]_{q}$-code $B_{i}=0$ for each value of i (where $1 \leq i \leq k$) such that there does not exist an $[n-i, k-i+1, d]_{q}$-code.

By this Lemma we find a lower bound d^{\perp} for the minimum distance of C^{\perp} and so $B_{1}=0, \ldots, B_{d^{\perp}-1}=0$.

Lemma 3 [10]. Let C be an $[n, k, d]_{q}$-code and $x \in C$, wt $(x)=w$ and $w<d+\left\lceil\frac{w}{3}\right\rceil$. Then $\operatorname{Res}(C, w)$ is an $\left[n-w, k-1, d^{\circ}\right]_{q}$-code, where $d^{\circ} \geq d-w+\left\lceil\frac{w}{q}\right\rceil$. ($\lceil x\rceil$ denotes the smallest integer $\geq x$).

If no such code exists then it follows that C has no words of weight w, and so $A_{w}=0$.
Thus, the weight enumerator of an $[n, k, d]_{q}$-code C is a feasible solution of the linear program,

$$
\operatorname{maximize}: 1+\sum_{i=d}^{n} A_{i}
$$

subject to

$$
\begin{aligned}
\sum_{i=d}^{n} K_{t}(i) \cdot A_{i} & =-K_{t}(0) & & t=1, \ldots, d^{\perp}-1 \\
\sum_{i=d}^{n=d} K_{t}(i) \cdot A_{i} & \geq-K_{t}(0) & & t=d^{\perp}, \ldots, n \\
A_{i} & \geq 0 & & i=d, \ldots, n \\
A_{i} & =0 & & i \in I \quad \text { (the set of absent weights) }
\end{aligned}
$$

Solving this linear programming problem, by the well-known simplex method, we find the upper bounds on $d_{q}(n, k)$ which are given in the next two sections.
3. New upper bounds on $\boldsymbol{d}_{\mathbf{3}}(\boldsymbol{n}, \boldsymbol{k})$. The next ternary linear codes do not exist:

$[201,18,119]_{3}$	$[202,18,121]_{3}$	$[206,18,122]_{3}$	$[209,18,124]_{3}$	$[212,18,126]_{3}$
$[215,18,128]_{3}$	$[218,18,130]_{3}$	$[221,18,132]_{3}$	$[223,18,133]_{3}$	$[225,18,135]_{3}$
$[229,18,137]_{3}$	$[232,18,139]_{3}$	$[235,18,141]_{3}$	$[238,18,143]_{3}$	$[241,18,145]_{3}$
$[244,18,147]_{3}$	$[246,18,148]_{3}$	$[218,19,129]_{3}$	$[221,19,131]_{3}$	$[229,19,136]_{3}$
$[232,19,138]_{3}$	$[235,19,140]_{3}$	$[238,19,142]_{3}$	$[241,19,144]_{3}$	$[243,19,145]_{3}$
$[242,20,144]_{3}$	$[204,21,118]_{3}$	$[208,21,121]_{3}$	$[214,21,125]_{3}$	$[216,21,126]_{3}$
$[219,21,128]_{3}$	$[222,21,130]_{3}$	$[225,21,132]_{3}$	$[228,21,134]_{3}$	$[236,21,139]_{3}$
$[239,21,141]_{3}$	$[207,22,119]_{3}$	$[210,22,121]_{3}$	$[213,22,123]_{3}$	$[215,22,124]_{3}$
$[218,21,126]_{3}$	$[221,22,128]_{3}$	$[224,22,130]_{3}$	$[227,22,132]_{3}$	$[229,22,133]_{3}$
$[232,21,135]_{3}$	$[235,22,137]_{3}$	$[209,23,119]_{3}$	$[213,23,122]_{3}$	$[224,23,129]_{3}$
$[227,23,131]_{3}$	$[232,23,134]_{3}$	$[209,25,118]_{3}$	$[214,25,121]_{3}$	$[217,25,123]_{3}$
$[220,25,125]_{3}$	$[223,25,127]_{3}$			

4. New upper bounds on $\boldsymbol{d}_{\mathbf{4}}(\boldsymbol{n}, \boldsymbol{k})$. The following quaternary linear codes do not exist:

	$[202,8,146]_{4}$	$[206,8,149]_{4}$	$[209,8,151]_{4}$	$[213,8,154]_{4}$
$[217,8,157]_{4}$	$[221,8,160]_{4}$	$[225,8,163]_{4}$	$[229,8,166]_{4}$	$[233,8,169]_{4}$
$[237,8,172]_{4}$	$[241,8,175]_{4}$	$[245,8,178]_{4}$	$[249,8,181]_{4}$	$[245,9,177]_{4}$
$[203,10,145]_{4}$	$[207,10,148]_{4}$	$[201,11,142]_{4}$	$[205,11,145]_{4}$	$[208,11,147]_{4}$
$[211,11,149]_{4}$	$[215,11,152]_{4}$	$[219,11,155]_{4}$	$[223,11,158]_{4}$	$[227,11,161]_{4}$
$[231,11,164]_{4}$	$[235,11,167]_{4}$	$[239,11,170]_{4}$	$[243,11,173]_{4}$	$[247,11,176]_{4}$
$[202,12,141]_{4}$	$[206,12,144]_{4}$	$[209,12,146]_{4}$	$[213,12,149]_{4}$	$[217,12,152]_{4}$
$[221,12,155]_{4}$	$[224,12,157]_{4}$	$[228,12,160]_{4}$	$[232,12,163]_{4}$	$[236,12,166]_{4}$
$[239,12,168]_{4}$	$[243,12,171]_{4}$	$[247,12,174]_{4}$	$[201,14,139]_{4}$	$[203,14,140]_{4}$
$[207,14,143]_{4}$	$[222,14,154]_{4}$	$[201,15,137]_{4}$	$[204,15,139]_{4}$	$[208,15,142]_{4}$
$[212,15,145]_{4}$	$[216,15,148]_{4}$	$[219,15,150]_{4}$	$[223,15,153]_{4}$	$[227,15,156]_{4}$
$[231,15,159]_{4}$	$[235,15,162]_{4}$	$[239,15,165]_{4}$	$[242,15,167]_{4}$	$[246,15,170]_{4}$
$[250,15,173]_{4}$	$[201,16,136]_{4}$	$[204,16,138]_{4}$	$[208,16,141]_{4}$	$[212,16,144]_{4}$
$[215,16,146]_{4}$	$[219,16,149]_{4}$	$[223,16,152]_{4}$	$[226,16,154]_{4}$	$[230,16,157]_{4}$
$[233,16,159]_{4}$	$[237,16,162]_{4}$	$[241,16,165]_{4}$	$[244,16,167]_{4}$	$[248,16,170]_{4}$
$[201,18,134]_{4}$	$[205,18,137]_{4}$	$[208,18,139]_{4}$	$[212,18,142]_{4}$	$[216,18,145]_{4}$
$[220,18,148]_{4}$	$[223,18,150]_{4}$	$[227,18,153]_{4}$	$[231,18,156]_{4}$	$[235,18,159]_{4}$
$[242,18,164]_{4}$	$[246,18,167]_{4}$	$[250,18,170]_{4}$	$[201,19,133]_{4}$	$[203,19,134]_{4}$
$[207,19,137]_{4}$	$[211,19,140]_{4}$	$[214,19,142]_{4}$	$[218,19,145]_{4}$	$[222,19,148]_{4}$
$[225,19,150]_{4}$	$[229,19,153]_{4}$	$[233,19,156]_{4}$	$[236,19,158]_{4}$	$[240,19,161]_{4}$
$[244,19,164]_{4}$	$[248,19,167]_{4}$	$[201,20,132]_{4}$	$[233,20,155]_{4}$	$[240,20,160]_{4}$
$[244,20,163]_{4}$	$[248,20,166]_{4}$	$[201,21,131]_{4}$	$[248,21,165]_{4}$	$[201,22,130]_{4}$
$[204,22,132]_{4}$	$[207,22,134]_{4}$	$[211,22,137]_{4}$	$[215,22,140]_{4}$	$[218,22,142]_{4}$
$[222,22,145]_{4}$	$[226,22,148]_{4}$	$[229,22,150]_{4}$	$[233,22,153]_{4}$	$[237,22,156]_{4}$
$[241,22,159]_{4}$	$[244,22,161]_{4}$	$[248,22,164]_{4}$	$[201,23,129]_{4}$	$[215,23,139]_{4}$
$[222,23,144]_{4}$	$[226,23,147]_{4}$	$[229,23,149]_{4}$	$[233,23,152]_{4}$	$[236,23,154]_{4}$
$[240,23,157]_{4}$	$[243,23,159]_{4}$	$[247,23,162]_{4}$	$[250,23,164]_{4}$	
$[22,20$				

REFERENCES

[1] A.E. Brouwer. Linear code bounds [electronic table; online], www.win.tue.nl/math/dw/personalpages/aeb/voorlincod.html.
[2] A. E. Brouwer, R. N. Daskalov, D. Berntzen, P. Kemper. The linear programming bound for ternary and quaternary linear codes. March 1993, (preprint).
[3] R. N. Daskalov. The linear programming bound for ternary linear codes. In: Proc. 1994 IEEE International Symposium on Information Theory. Trondheim, Norway, June 27-July 01, 1994, 423.
[4] R. N. Daskalov. Minimum distance bounds for quaternary linear codes, Mathematics and Education in Mathematics, 23 (1994), 143-155.
[5] R. N. Daskalov, E. Metodieva. Bounds on minimum length for quaternary linear codes in dimensions six and seven. Mathematics and Education in Mathematics, 23 (1994), 156-161. [6] R. N. Daskalov. The linear programming bound for quaternary linear codes. In: Proceedings of Fourth International Workshop on Algebraic and Combinatorial Coding Theory. Novgorod, Russia, September 11-17, 1994, 74-77.
[7] R. N. Daskalov. The sharpened linear programming bound for ternary linear codes. Mathematics and Education in Mathematics, 24 (1995), 158-166.
[8] R. N. Daskalov, E. Metodieva. Minimum distance bounds for quaternary linear codes in dimension five. Mathematics and Education in Mathematics 24 (1995), 167-176.
[9] S. Guritman. Restrictions on the Weight Distribution of Linear Codes. Ph. D. Dissertation, Delft University of Technology, The Netherlands, 2000.
[10] S. M. Dodunekov. Minimum block length of a linear q-ary code with specified dimension and code distance. Probl. Inform. Transm., 20 (1984), 239-249.
[11] R. Hill, D. E. Newton. Optimal ternary linear codes. Designs, Codes and Cryptography, 2 (1992), 137-157.
[12] F. J. MacWilliams, N. J. A. Sloane. The Theory of Error-Correcting Codes. Amsterdam, North-Holland, 1977.

Rumen Daskalov, Elena Daskalova
Department of Mathematics
Technical University of Gabrovo
5300 Gabrovo, Bulgaria
e-mail: daskalov@tugab.bg

ГРАНИЦА НА ЛИНЕЙНОТО ПРОГРАМИРАНЕ ЗА ЛИНЕЙНИ КОДОВЕ НАД $G F(3)$ И $G F(4)$

Румен Даскалов, Елена Даскалова

Пресметната е границата на линейното програмиране за линейни кодове с дължина между 201 и 250 над $G F(3)$ и $G F(4)$.

[^0]: ${ }^{*}$ This work was partially supported by the Ministry of Education and Science under contract in TU-Gabrovo.

