
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2002
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002

Proceedings of Thirty First Spring Conference of
the Union of Bulgarian Mathematicians

Borovets, April 3–6, 2002

EXTENDED BOOLEAN OPERATIONS IN LATENT

SEMANTIC INDEXING SEARCH

Jivko Steftchev Jeliazkov, Preslav Ivanov Nakov

The paper presents a method for the usage of Boolean expressions for information
retrieval based on Latent Semantic Indexing (LSI). The basic binary Boolean ex-
pressions such as OR, AND and NOT (AND-NOT) and their combinations have
been implemented. The proposed method adds a new functionality to the classic
LSI method capabilities to process user queries typed in a natural language (such as
English, Bulgarian or Russian) used in the “intelligent” search engines. This gives
the user the opportunity of combining not only distinct words or phrases, but also
whole texts (documents) using all kinds of Boolean expressions. An evaluation of the
implementations has been performed using a text collection of religious and sacred
texts.

Introduction. The classic search engines give the user the opportunity to use
keywords and/or Boolean expressions containing keywords. The “intelligent” search
engines can process queries in natural language but do not permit the usage of Boolean
expressions. We focus on the design of appropriate functions and mechanisms that will
give the user an opportunity to combine free-form queries with Boolean operations in
order to get better search results. The goal is achieved by combining the classic LSI
algorithm with sophisticated implementation of the appropriate Boolean operations.

Latent Semantic Indexing. The Latent Semantic Indexing (LSI) is a powerful
statistical technique for information retrieval. It is a two-stage process that consists of
(see [2, 3, 4] for details): off-line construction of document index, and on-line respond
to user queries.

The off-line part is the training part when LSI creates its index. First a large word-to-
document matrix X is constructed where the cell (i, j) contains the occurrence frequency
of the i-th word into the j-th document. After that, a singular value decomposition

(SVD) is performed, which gives as a result three matrices D, T (both orthogonal) and S
(diagonal), such that X = DST t. Then all the three matrices are truncated in such a way
that if we multiply the truncated ones D′, S′ and T ′, we get a new matrix X ′ which is the
least-squares best fit approximation of X . This results in the compression of the original
space in a much smaller one where we have just a small number of significant factors
(usually 50-400). Each document is then represented by a vector of low dimensionality
(e.g. 100). It is possible to perform a sophisticated SVD, which speeds up the process
by directly finding the truncated matrices D′, S′ and T ′ (see [1]).

155

The on-line part of our search engine (and of LSI) receives the query (pseudo-document)
that the user typed and finds out its corresponding vector into the document space con-
structed by the off-line part using a standard LSI mechanism. Now we can measure the
degree of similarity between the query and the indexed documents by simply calculating
the cosine between their corresponding vectors. (see [5, 6])

Boolean operations. Consider an e-commerce portal tracking the users’ purchases
in order to offer them personalised advertisement: banners, etc. We can think of the
purchases as query components and of the advertisement as a new document in the
same space. We need some kind of a similarity function that will give us a measure
of the similarity between our advertisements and the users “profile”. Let us define d1,
d2, . . . , dn as distances (in LSI sense) between the ad and the n components of the
query. The classic LSI algorithm calculates the cosines between the vectors to find the
degree of their similarity. Most of the similarity measures for the Boolean operations
we propose below are based on Euclidean distances, although we can use some other
distances (angle, Manhattan distance, Chebishov distance, power distance, etc.). It is
important to note that we must first normalise the vectors before calculating Euclidean
distances. All Boolean operations proposed return a value between 0 and 1. Almost the
same results can be obtained using the classic cosines but for some functions it is difficult
to fit the values returned in the interval [0, 1]. There are several similarity measures we
have experimented with:

• OR-similarity measure. This measure depends only on the minimal distance be-
tween the document and the query components and has the following general representa-
tion: Sor = f(min(g(d1), g(d2), . . . , g(dn))), where f(x) and g(x) are some one-argument
functions.

Fig. 1. OR similarity for two and three component query

In case we have more information for the query we can add weights to the query
components and modify g(x) to g(x, w). So the formula is:

Sor = f(min(g(d1, w1), g(d2, w2), . . . , g(dn, wn))).

OR similarity measure has well separated picks at the query components vectors. The
similarity measures for two- and three-component query, f(x) = 1/(1 + x), g(x) = x are
shown on figure 1.

• AND-similarity measure. This measure depends only on the sum of distances
between the document and the query components. This measure has the following general
representation:

Sor = f(g(d1) + g(d2) + · · · + g(dn))),

where f(x) and g(x) are some one-argument functions. Usually this measure can be
thought of a superposition of distinct similarity measures of the query components.

156

Fig. 2. AND similarity for two and three-component query

The similarity measure for two- and three-component query, f(x) = 1/(1+x), g(x) =
x are shown on figure 2.

• Combination of the previous two (AND-OR). This similarity measure is a
combination between the previous two. Sand−or = f(Sand, Sor). We can use linear
combination between Sor and Sand measures. S = k.Sor + (1 − k).Sand, where k is
constant and 0 ≤ k ≤ 1.

Fig. 3. Combined similarity for 2 and 3 comp. query, k = 0.5

Figure 3 shows the two- and three-component query results for k = 0.5. We still have
two distinct parts like the OR-similarity function but higher values in the middle region
between them just like the AND-similarity function. Figure 4 is an example of a weighed
combined similarity measure.

Fig. 4. Weighed combination for 2
component query, k = 0.5

Fig. 5 NOT (AND-NOT)
similarity measure

• Binary NOT (AND-NOT)-similarity measure. A common problem with
the search engines is that they often return too much documents considered as “very
similar” to the user query. In this case the user could specify what to exclude. So we
have a composite query consisting of two natural language phrases: one saying what
to include and the other one what to exclude. This leads to the creation of the binary
NOT similarity measure. If a document is more similar to the exclude document text
it will receive a similarity measure of 0 (see the second clause below). Otherwise, we
return a similarity measure between 0 and 1, that takes in account the distances to both
documents. We can define the NOT-measure Snot = 1− d1/(1 + d2), when d1 < d2, and
Snot = 0, else. The result is shown on figure 5.

Application to Religious and Sacred Texts. The Boolean operations we pro-
pose have been tested on a document collection of religious and sacred texts we found
at http://davidwiley.com/religion.html. We selected 196 different religious and

157

sacred texts from 14 categories: apocrypha (acts, apocalypses, gospels, writings), Bud-
dhism, Confucianism, Dead Sea scripts, The Egyptian Book of the Dead, Sun Tzu: The
Art of War, Zoroastrianism, The Bible (Old and New Testaments), The Quran and The
Book of Mormons. The experiments were performed in a 30 dimensional space with a
preliminary to SVD replacement of the frequencies in X (196 documents × 11451 words)
with logarithms (see [6] for detailed explanation). Fig. 6 illustrates the inter-document
similarities given by the correlation matrix (196 × 196), shown in 5 different colours for
the five correlation intervals: 87,5–100%, black colour; 75–87,5%, dark grey; 62,5–75%,
grey; 50–62,5%, light grey; 0–50%, white.

The dark rectangles in the main diagonal show the high correlation between texts
belonging to the same religion. For example: the black rectangle from the bottom right
corner contains texts from the Book of Mormons. To the left and up on the main diagonal
can be found the Quran, then the Old Testament (The Bible), then come the Zoroastrian
texts, The New Testament (The Bible), the Sun Tzu’s Art of War, the Egyptian Book
of the Dead and so forth. And the smooth rectangle in the upper left corner shows the
relatively high similarity between all kinds of apocrypha present. We see for example
that The Book of Mormons is more correlated to the New Testament than to The Old
Testament.

The first class of experiments was “practical” and included composition of two or
more different queries and their combination with Boolean operations we implemented.

Fig. 6. Correlation between religious text
(196× 196)

Fig. 7. Correlation between religious text
(196× 196)

The second class of “theoretical” experiments included the choice of two or more texts
from the same space and performing queries using Boolean operations (OR, AND and
NOT).

One of the most interesting experiments were those with the combined OR and AND
similarity measure search using different values for the parameter k. Fig. 7 shows
the distribution of the correlation coefficients returned by our search engine for the 196
documents using a text from the Sun Tzu’s Art of War and another one from the Egyptian
Book of the Dead. We can see that the results vary which suggests that we can obtain

158

quite different results by just tuning the parameter k. The tables below show an example
of the Boolean operations at work.

Conclusion. We consider the technique of LSI to be very important in the future
and continue our experiments with new kinds of similarity functions and their behaviour
on different types of texts. Further work concerns study of the dependence of the best
similarity function upon the text collection parameters.

Z:\ >new doc

suntzu1.txt

SUNTZU1.TXT: 1.00000000

SUNTZU10.TXT: 0.96812259

SUNTZU8.TXT: 0.96652910

SUNTZU11.TXT: 0.93972055

SUNTZU3.TXT: 0.93858290

SUNTZU9.TXT: 0.93604917

SUNTZU5.TXT: 0.93365826

SUNTZU2.TXT: 0.93192063

SUNTZU6.TXT: 0.93054489

SUNTZU4.TXT: 0.92828905

SUNTZU7.TXT: 0.92593509

CONF2.TXT: 0.91226262

SUNTZU13.TXT: 0.91114359

SUNTZU12.TXT: 0.85816521

CONF1.TXT: 0.82958573

CONF5.TXT: 0.78001097

CONF3.TXT: 0.75975322

CONF8.TXT: 0.75835731

CONF9.TXT: 0.74499495

PLNSENCA.HTM: 0.73306848

CONF7.TXT: 0.71974991

CONF4.TXT: 0.71070083

COMRULE.HTM: 0.68268537

CONF6.TXT: 0.68213084

APCTHOM.HTM: 0.65737315

TOMCNTND.HTM: 0.65597126

REPORTPL.HTM: 0.64527600

ACTPTNPL.HTM: 0.64414208

REPTPILT.HTM: 0.63537118

BKS.HTM: 0.63271447

CONSTITU.HTM: 0.60308042

...........................

Z:\ >new doc bool

suntzu1.txt conf1.txt AND

CONF2.TXT: 0.93506011

SUNTZU1.TXT: 0.91479286

CONF1.TXT: 0.91479286

SUNTZU13.TXT: 0.90802675

SUNTZU8.TXT: 0.90745685

SUNTZU10.TXT: 0.89604427

SUNTZU2.TXT: 0.88122315

SUNTZU3.TXT: 0.87397853

SUNTZU11.TXT: 0.86994911

CONF5.TXT: 0.85956386

SUNTZU6.TXT: 0.85553152

CONF3.TXT: 0.85421266

CONF8.TXT: 0.84673427

SUNTZU5.TXT: 0.84201628

CONF9.TXT: 0.83800404

SUNTZU4.TXT: 0.83730812

SUNTZU9.TXT: 0.83378707

SUNTZU7.TXT: 0.82986823

CONF7.TXT: 0.82701671

CONF4.TXT: 0.80956085

CONF6.TXT: 0.78754286

SUNTZU12.TXT: 0.77238908

PLNSENCA.HTM: 0.71858016

COMRULE.HTM: 0.65251025

TOMCNTND.HTM: 0.64263567

SENTANCE.HTM: 0.60424740

BKS.HTM: 0.58734007

APCTHOM.HTM: 0.57461640

FGAPCPT.HTM: 0.57040597

GOSMARY.HTM: 0.56554976

MYSTERY.HTM: 0.56087279

...........................

Z:\ >new doc bool

suntzu1.txt conf1.txt NOT

SUNTZU1.TXT: 1.00000000

SUNTZU10.TXT: 0.98252302

SUNTZU8.TXT: 0.98189181

SUNTZU11.TXT: 0.96651472

SUNTZU3.TXT: 0.96605616

SUNTZU9.TXT: 0.96306676

SUNTZU2.TXT: 0.96280884

SUNTZU5.TXT: 0.96209854

SUNTZU6.TXT: 0.96099163

SUNTZU4.TXT: 0.95893613

SUNTZU7.TXT: 0.95728178

SUNTZU13.TXT: 0.95335401

SUNTZU12.TXT: 0.91590555

PLNSENCA.HTM: 0.84335849

COMRULE.HTM: 0.80440870

TOMCNTND.HTM: 0.78884876

APCTHOM.HTM: 0.77033574

BKS.HTM: 0.76180693

REPORTPL.HTM: 0.75937276

ACTPTNPL.HTM: 0.75767365

REPTPILT.HTM: 0.75380184

FGAPCPT.HTM: 0.73594581

MARTBART.HTM: 0.73030361

CONSTITU.HTM: 0.72582505

MYSTERY.HTM: 0.72447034

ACTJNTHE.HTM: 0.71790911

APCJMS1.HTM: 0.71604588

ACTMAT.HTM: 0.71421530

REVSTEV.HTM: 0.71192762

NAGHAM6.HTM: 0.70218790

DEATHPLT.HTM: 0.70177880

...........................

Z:\ >new doc bool

suntzu1.txt conf1.txt OR

SUNTZU1.TXT: 0.99999997

CONF1.TXT: 0.99999993

CONF2.TXT: 0.82317039

SUNTZU8.TXT: 0.72128584

SUNTZU10.TXT: 0.69019913

SUNTZU13.TXT: 0.68069817

SUNTZU2.TXT: 0.61376306

SUNTZU3.TXT: 0.60314637

SUNTZU11.TXT: 0.59609037

CONF5.TXT: 0.57673504

CONF3.TXT: 0.57598572

SUNTZU6.TXT: 0.56392683

CONF8.TXT: 0.55314244

SUNTZU5.TXT: 0.54518708

CONF9.TXT: 0.53777290

SUNTZU9.TXT: 0.53540358

SUNTZU4.TXT: 0.53511372

CONF7.TXT: 0.52538150

SUNTZU7.TXT: 0.52381202

CONF4.TXT: 0.49115954

CONF6.TXT: 0.46332613

SUNTZU12.TXT: 0.44084160

PLNSENCA.HTM: 0.38921508

COMRULE.HTM: 0.35047941

TOMCNTND.HTM: 0.34533693

SENTANCE.HTM: 0.32821505

BKS.HTM: 0.32180010

APCTHOM.HTM: 0.31799264

FGAPCPT.HTM: 0.31500315

GOSMARY.HTM: 0.31317246

REPORTPL.HTM: 0.31256336

...........................

REFERENCES

[1] M. Berry, T. Do, G. O’Brien, V. Krishna, S. Varadhan. SVDPACKC (Version 1.0)
User’s Guide. April 1993.
[2] S. Deerwester, S. Dumais, G. Furnas, T. Laundauer, R. Harshman. Indexing by

Latent Semantic Analysis. Journal of the American Society for Information Sciences, 41 (1990),
391–47.
[3] T. Laudauer, P. Foltz, D. Laham. Introduction to Latent Semantic Analysis. Discourse
Processes, 25, 259–284.
[4] LSA 1990-99, see http://lsa.colorado.edu

[5] P. Nakov. Getting Better Results with Latent Semantic Indexing. In Proceedings of the
Students Presentations at ESSLLI-2000, 156-166, Birmingham, UK, August 2000.
[6] P. Nakov. Latent Semantic Analysis of Textual Data. In Proceedings of CompSys-
Tech’2000, Sofia, Bulgaria. June 2000.

Rila Solutions
Acad. G. Bontchev Str.
1113, Sofia, Bulgaria
e-mail: Jivko.Jeliazkov@rila.com, Preslav.Nakov@rila.com

159

РАЗШИРЕНИ БУЛЕВИ ОПЕРАЦИИ ЗА ТЪРСЕНЕ ПО МЕТОДА НА

ЛАТЕНТНОТО СЕМАНТИЧНО ИНДЕКСИРАНЕ

Живко Стефчев Желязков, Преслав Иванов Наков

Представен е метод за използване на булеви функции при извличане на инфор-
мация по метода на латентното семантично индексиране (ЛСИ). Реализирани
се основните булеви операции ИЛИ, И и НЕ, както и техни комбинации. Пред-
ложеният метод добавя нова функционалност към класическите възможности
на ЛСИ за обработка на потребителски заявки на естествен език (английски,
български, руски), използвани от интелигентните търсещи машини. Това дава
възможност на потребителя да комбинира не само отделни думи, но и цели тек-
стове, използвайки всевъзможни булеви операции. Действието на операциите е
демонстрирано върху колекция от религиозни текстове.

160

