ON BINDING-HOSKINS-PONZO TYPE INEQUALITIES*

N. Kyurkchiev, M. Petkov

In this paper we adapt the techniques in [1] to obtain the best possible bounds on the zeros of the characteristic equation of a positive definite matrix, obtained from the Weierstrass series, when the determinant D, trace T and stopping criterion q for the Weierstrass iteration method are given.
Key words: Binding-Hoskins-Ponzo inequality, eigenvalues, upper and lower bounds, Weierstrass series, stopping criterion.

1. Introduction. Let A be a positive definite matrix, and let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$, $\lambda_{i}>0, i=1,2, \ldots, n$ be the distinct zeros of the characteristic equation (of A)

$$
\begin{equation*}
\operatorname{det}(B-\lambda I)=f(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}=0 \tag{1}
\end{equation*}
$$

The following theorem is very often applicable
Theorem A (Binding, Hoskins, Ponzo [1]). The smallest and largest of the two positive real roots of

$$
t=T-(n-1)\left(\frac{D}{t}\right)^{\frac{1}{n-1}}
$$

or

$$
t=D\left(\frac{n-1}{T-t}\right)^{n-1}
$$

provide, respectively, the greatest lower bound and least upper bound of the eigenvalues of the positive $n \times n$ matrix A, where $D=\operatorname{det}(A)$ and $T=\operatorname{trace}(A)$, i.e.

$$
\max _{i} \lambda_{i} \leq t_{2} ; \quad t_{1} \leq \min _{i} \lambda_{i}
$$

In practice, the popular formulae for the simultaneous approximation of the eigenvalues (the roots of the equation (1)) is the Weierstrass procedure

$$
\begin{equation*}
\lambda_{i}^{k+1}=\lambda_{i}^{k}-\frac{f\left(\lambda_{i}^{k}\right)}{\prod_{j \neq i}^{n}\left(\lambda_{i}^{k}-\lambda_{j}^{k}\right)}, i=1,2, \ldots, n ; k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

The great importance for the user is the knowledge of upper and lower bounds on the approximations λ_{i}^{k}.

[^0]2. Main results. Let
$$
0<x \leq \lambda_{1}^{s} \leq \lambda_{2}^{s} \leq \cdots \leq \lambda_{n-2}^{s} \leq y, s=0,1,2, \ldots
$$
be the approximations, obtained from the Weierstrass series. For $\lambda_{i}^{k}, \lambda_{i}^{k+1}$, determined by (2), it holds, [2] :
$$
\sum_{i=1}^{n} \lambda_{i}^{k+1}=-a_{n-1}
$$
\[

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}^{k+1} \prod_{j \neq i}^{n} \lambda_{j}^{k}-(n-1) \prod_{j=1}^{n} \lambda_{j}^{k}=(-1)^{n} a_{0} \tag{3}
\end{equation*}
$$

\]

However, $\lambda_{i}^{k+1}=q_{i} \lambda_{i}^{k}$, where $\sum_{i=1}^{n} q_{i}=q$ is an absolute constant for the method (2) (stopping criterion) and

$$
\begin{aligned}
& -a_{n-1}=\sum_{i=1}^{n} \lambda_{i}=T \\
& (-1)^{n} a_{0}=\prod_{i=1}^{n} \lambda_{i}=D
\end{aligned}
$$

Evidently,

$$
\begin{aligned}
& x+\sum_{i=1}^{n-2} \lambda_{i}^{k}+y=T \\
& \frac{\lambda_{1}^{k+1}}{\lambda_{1}^{k}} \prod_{j=1}^{n} \lambda_{j}^{k}+\cdots+\frac{\lambda_{n}^{k+1}}{\lambda_{n}^{k}} \prod_{j=1}^{n} \lambda_{j}^{k}-(n-1) \prod_{j=1}^{n} \lambda_{j}^{k}=D \\
& x y \prod_{j=1}^{n-2} \lambda_{j}^{k}\left(\sum_{i=1}^{n} \frac{\lambda_{i}^{k+1}}{\lambda_{i}^{k}}-(n-1)\right)=D \\
& x y \prod_{j=1}^{n-2} \lambda_{j}^{k}(q+1-n)=D
\end{aligned}
$$

and

$$
\begin{align*}
(n-1) x+y & \leq T \leq x+(n-1) y \tag{4}\\
(1+q-n) x^{n-1} y & \leq D \leq(1+q-n) x y^{n-1} \tag{5}
\end{align*}
$$

Note that $\frac{T-x-y}{n-2}=$ arithmetic mean of the $\lambda_{i}^{k}=\alpha$ and $\left(\frac{D}{(1+q-n) x y}\right)^{\frac{1}{n-2}}=$ geometric mean of the $\lambda_{i}^{k}=\beta$. Evidently, $\alpha \geq \beta$ for positive λ_{i}^{k} and

$$
\frac{T-x-y}{n-2} \geq\left(\frac{D}{(1+q-n) x y}\right)^{\frac{1}{n-2}}
$$

Fig. 1 Adapted construction by Binding, Hoskins and Ponzo

The contour (see, Fig.1)

$$
F(x, y)=(1+q-n) x y(T-x-y)^{n-2}-D(n-2)^{n-2}=0
$$

is easily shown to pass through $L\left(x_{L}, y_{L}\right)$ and $M\left(x_{M}, y_{M}\right)$ the points of intersection of the bounding contours described by (4) and (5).

Note that

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\left(\frac{y}{x}\right) \frac{T-((n-1) x+y)}{T-(x+(n-1) y)}= \begin{cases}\infty & \text { at } L \\ 0 & \text { at } M\end{cases}
$$

x_{L} and y_{M} are respectively the smaller and larger of the two positive real roots of

$$
\begin{equation*}
z=T-(n-1)\left(\frac{D}{(1+q-n) z}\right)^{\frac{1}{n-1}} \tag{6}
\end{equation*}
$$

which may also be written

$$
\begin{equation*}
z=\frac{D}{1+q-n}\left(\frac{n-1}{T-z}\right)^{n-1} \tag{7}
\end{equation*}
$$

We summarize the above

Theorem B. The smallest and largest of the two positive real roots of (6) (or (7)) provide, respectively, the greatest lower bound and least upper bound of the approximations λ_{i}^{k}, when $D=(-1)^{n} a_{0}, T=-a_{n-1}$ and stopping criterion q are given, i.e.

$$
\max _{i} \lambda_{i}^{k} \leq z_{2} ; \quad z_{1} \leq \min _{i} \lambda_{i}^{k}
$$

As an immediate consequence of Theorem B, we have the following corollary.
Corollary. Each member of the sequence $\left\{x_{i}\right\}_{0}^{\infty}$,

$$
x_{i+1}=\frac{D}{1+q-n}\left(\frac{n-1}{T-x_{i}}\right)^{n-1}, x_{0}=0
$$

provides a lower bound on the λ_{j}^{k} and $\lim x_{i}=x_{L}$.
Each member of the sequence $\left\{y_{i}\right\}_{0}^{\infty}$,

$$
y_{i+1}=T-(n-1)\left(\frac{D}{(1+q-n) y_{i}}\right)^{\frac{1}{n-1}}, y_{0}=T
$$

provides a upper bound on the λ_{j}^{k} and $\lim y_{i}=y_{M}$.
Remark 1. In case when approximations λ_{i}^{k}, obtained from the Weierstrass series are equal to zeros of the characteristic equation (1) - λ_{i} (i.e. $\sum_{i=1}^{n} q_{i}=q=n$), we have the result due to Binding, Hoskins and Ponzo.

Remark 2. Let λ_{i} are located in n non-intersecting intervals $L_{i}^{0}=\left[\underline{\lambda}_{i}^{0}, \bar{\lambda}_{i}^{0}\right], i=$ $1, \ldots, n$, that is $L_{i}^{0} \bigcap L_{j}^{0}=\varnothing$ for $i \neq j$ and $\lambda \in L_{i}^{0}$ for $i=1, \ldots, n$. The two-sided Weierstrass method can be written as

$$
\begin{gathered}
\bar{\lambda}_{i}^{k+1}=\bar{\lambda}_{i}^{k}-\frac{f\left(\bar{\lambda}_{i}^{k}\right)}{\prod_{j=1}^{i-1}\left(\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}\right) \prod_{j=i+1}^{n}\left(\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}\right)} \\
\underline{\lambda}_{i}^{k+1}=\underline{\lambda}_{i}^{k}-\frac{f\left(\underline{\lambda}_{i}^{k}\right)}{\prod_{j=1}^{i-1}\left(\underline{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}\right) \prod_{j=i+1}^{n}\left(\underline{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}\right)}, \\
i=1, \ldots, n ; k=0,1, \ldots
\end{gathered}
$$

Then the estimations of the λ_{i}^{k} can be improved using the approach given in this paper, and by using the explicit formulae [2]

$$
\begin{aligned}
& \sum_{i=1}^{n} \bar{\lambda}_{i}^{k+1} \prod_{j=1}^{i-1} \frac{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}=\sum_{i=1}^{n} \bar{\lambda}_{i}^{k}\left(\prod_{j=1}^{i-1} \frac{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}-1\right)-a_{n-1} \\
& \sum_{i=1}^{n} \bar{\lambda}_{i}^{k+1} \prod_{j \neq i}^{n} \bar{\lambda}_{j}^{k} \prod_{j=1}^{i-1} \frac{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}=\sum_{i=1}^{n} \bar{\lambda}_{i}^{k} \prod_{j \neq i}^{n} \bar{\lambda}_{j}^{k}\left(\prod_{j=1}^{i-1} \frac{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}-1\right)+(n-1) \prod_{j=1}^{n} \bar{\lambda}_{j}^{k}+(-1)^{n} a_{0}
\end{aligned}
$$

or

$$
\begin{aligned}
& \sum_{i=1}^{n} \underline{\lambda}_{i}^{k+1} \prod_{j=1}^{i-1} \frac{\hat{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}{\lambda_{i}^{k}-\underline{\lambda}_{j}^{k}} \quad=\sum_{i=1}^{n} \underline{\lambda}_{i}^{k}\left(\prod_{j=1}^{i-1} \frac{\underline{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}-1\right)-a_{n-1}, \\
& \sum_{i=1}^{n} \underline{\lambda}_{i}^{k+1} \prod_{j \neq i}^{n} \underline{\lambda}_{j}^{k} \prod_{j=1}^{i-1} \frac{\bar{\lambda}_{i}^{k}-\bar{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}=\sum_{i=1}^{n} \underline{\lambda}_{i}^{k} \prod_{j \neq i}^{n} \underline{\lambda}_{j}^{k}\left(\prod_{j=1}^{i-1} \frac{\lambda_{i}^{k}-\bar{\lambda}_{j}^{k}}{\bar{\lambda}_{i}^{k}-\underline{\lambda}_{j}^{k}}-1\right)+(n-1) \prod_{j=1}^{n} \underline{\lambda}_{j}^{k}+(-1)^{n} a_{0} .
\end{aligned}
$$

REFERENCES

[1] P. Binding, W. Hoskins and P. Ponzo. Bounds for characteristic values of positive definite matrices. Canad. Math. Bull. Vol. 151 (1972), 51-56.
[2] N. Kyurkchiev. Initial approximation and root finding methods. WILEY-VCH Verlag Berlin GmbH, Vol. 104 (1998), 1-180.
N. Kyurkchiev

Institute of Mathematics
Bulgarian Academy of Science
Acad. G. Bonchev Str., Bl. 8
Sofia 1113, Bulgaria
M. Petkov

Institute of Mathematics
Bulgarian Academy of Science
Acad. G. Bonchev Str., Bl. 8
Sofia 1113, Bulgaria

ВЪРХУ НЕРАВЕНСТВА ОТ ТИП БИНДИНГ-ХОСКИНС-ПОНЗО

Николай Веселинов Кюркчиев, Милко Георгиев Петков

В тази работа са получени оценки за корените на характеристично уравнение на положително дефинитна матрица.

[^0]: ${ }^{*}$ Math. Subject Classifications: 65H05.

