
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2002
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002

Proceedings of Thirty First Spring Conference of
the Union of Bulgarian Mathematicians

Borovets, April 3–6, 2002

A CRITICAL BRANCHING PROCESS WITH INCREASING

OFFSPRING VARIANCE
*

Kosto V. Mitov, George P. Yanev

We study critical Bienaymé-Galton-Watson branching processes with increasing off-
spring variance in the particular case of a geometric offspring distribution. The in-
creasing variance has a decreasing effect on the process in the sense that the rate of
the non-extinction probability decreases. We obtain limit theorems for the process
subject to either state-independent or state-dependent immigration.

1. Introduction. The Bienaymé-Galton-Watson branching process {µn} can be
defined by the recurrence formula

(1) µn =

µn−1
∑

i=1

Xi(n), n = 1, 2, . . . ; µ0 ≡ 1,

where {Xi(n)}, i, n = 1, 2, . . . are independent and identically distributed random vari-
ables, taking on nonnegative integer values.

We are interested in branching processes with varying offspring variance. These mod-
els can be considered within the framework of branching processes with varying envi-
ronments (see e.g. Jagers(1974) [2]). In particular we want to study the case when the
offspring mean is fixed but the offspring variance increases to infinity along with the
generation index (time). Although all three classes processes: subcritical, critical, and
subcritical are of interest, here we shell focus on the critical case. The behavior of the
critical processes is of particular interest from analytical viewpoint (obtaining new limit
theorems) as well as from modelling perspective, to see whether the process can reach a
stationary state. As we see below, the increasing offspring variance has a decreasing effect
to the population in the sense of decreasing the rate of the non-extinction probability.
Therefore, it is worth considering an immigration component that brings “immigrants”
from an outside source and balances the population.

Further on we shell study the particular case of a geometric offspring distribution
with mean one given by

(2) pn(k) = P (µn = k|µn−1 = 1),

where for 0 ≤ pn < 1,

pn(0) = pn and pn(k) = (1 − pn)2pk−1
n , k = 1, 2, . . .
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The offspring mean and variance are

EXi(n) = 1, V arXi(n) =
2pn

1 − pn

= 2bn < ∞, say.

The offspring pgf is given by

fn(s) =

∞
∑

k=0

pn(k)sk =
pn − (2pn − 1)s

1 − pns
=

bn(1 − s) + s

bn(1 − s) + 1

After discussing the process {µn} (without immigration) in Section 2, we present some
results for {µn} subject two different immigration policies: state-independent (Section 3)
and state-dependent (Section 4) immigration. The last section contains some concluding
remarks.

2. Processes without Immigration. Let gn(s) be the pgf of µn assuming a
geometric offspring distribution defined by (2). Hence,

gn(s) =

∞
∑

k=0

P (µn = k)sk =
σn(1 − s) + s

σn(1 − s) + 1
,

where σn =
n
∑

k=1

bk .

From here it is not difficult to see that Eµn = 1, V arµn = 2σn and

P (µn > 0) = 1 − gn(0) =
1

σn + 1
.

Therefore, if infn bn > 0 then

lim
n→∞

P (µn = 0) = 1.

Note that, if bn → ∞, then P (µn = 0) → 1 faster than in a process with constant
offspring variance, whereas bn → b < ∞ results in the same rate 1/(bn) for processes
with both constant and varying offspring variance.

As a direct corollary of Theorem 5 in Jagers(1974) [2] we have

Theorem 1 (Jagers(1974) [2]). Suppose that infn bn > 0. Then

lim
n→∞

P (µn/σn > x|µn > 0) = e−x, x ≥ 0

where σn =
n
∑

k=1

bk.

Comment. This result shows that despite the fact that P (µn = 0) → 1 faster
than when the variance is constant, the quasi-stationary distribution is still exponential.
Notice that, the offspring variance increases to infinity as n → ∞ remaining finite for
any fixed n.

3. Processes with State-Independent Immigration. Consider a branching
process with immigration defined by the recurrence

Zn =

Zn−1
∑

i=1

Xi(n) + Yn, n = 1, 2, . . . ; Z0 ≡ 1,

where Zn represents the population size at time n of the process {µn} in (1) that has
been modified to allow immigration. Yn particles enter the system at time n, where the
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random variables {Yn} are independent and identically distributed with pgf

h(s) = 1 − α(1 − s) + β(1 − s)2

Let us assume geometric offspring (2) with increasing variance, i.e.,

lim
n→∞

bn ↑ ∞.

For the process’ pgf we have

(3)

Fn(s) =
n
∏

k=0

h(gn−k(s))

=

n
∏

k=0

(

1 −
α(1 − s)

σn−k(1 − s) + 1
+

β(1 − s)2

(σn−k(1 − s) + 1)2

)

Set s = 0 in the above equation. Then

P (Zn = 0) =

n
∏

k=0

(

1 −
α

σn−k + 1
+

β

(σn−k + 1)2

)

= exp

{

n
∑

k=0

log

(

1 −
α

σn−k + 1
+

β

(σn−k + 1)2

)

}

∼ exp

{

−
n
∑

k=0

(

α

σn−k + 1
−

β

(σn−k + 1)2

)

}

.

Therefore,

lim
n→∞

P (Zn = 0) =























exp

{

−

∞
∑

n=0

(

α

σn + 1
−

β

(σn + 1)2

)

}

if

∞
∑

n=0

1/σn < ∞,

0 if

∞
∑

n=0

1/σn = ∞.

Note that, the probability for extinction would be smaller if either the immigration
mean is bigger or the offspring variance goes to infinity in a slower rate.

Using a standard argument based on the particular form (3) of process’ pgf we obtain

Theorem 2.

lim
n→∞

P (Zn = k) =



















rk if

∞
∑

n=0

1/σn < ∞

0 if

∞
∑

n=0

1/σn = ∞,

where σn =
∑n

k=1
bk and {rk}, k = 0, 1, . . . is a probability distribution with pgf

R(s) = exp

{

−

∞
∑

n

(

α(1 − s)

1 + σn(1 − s)
−

β(1 − s)2

(1 + σn(1 − s))2

)

}

.

Comment. It is clear that if the offspring variance increases sufficiently fast, then the
series above will be convergent and the process has a non-degenerate limiting distribution.

4. Processes with State-Dependent Immigration. Consider, on a probability
space (Ω, A, P ), a sequence of independent Bienaymé-Galton-Watson branching processes
{µn(k)}, k = 1, 2, . . . with identical geometric offspring distributions (2). Denote by Tk
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the time to extinction of µn(k), i.e., for any n

P (Tk > n) = P (µn(k) > 0)

Let us construct a discrete renewal process {Sn} n = 1, 2, . . . as follows: S0 = 0,

Sk+1 = Sk + Tk+1, k ≥ 0

and set

N(n) = max{k : Sk ≤ n} .

Then the well-known Bienaymé-Galton-Watson branching process with immigration at
zero only {Z0

n} can be defined by

Z0
n = µn−SN(n)

(N(n) + 1)

Note that, {Z0
n} is a renewal process and therefore its asymptotic behavior depends on

whether its mean renewal time ETk is finite or not. Recall that σn =
n
∑

k=1

bk.

Case 1.
∞
∑

n=1

1/σn < ∞. Since

P (µn(k) > 0) =
1

σn + 1

then

(4) ETk =

∞
∑

n=0

P (Tk > n) =

∞
∑

n=o

P (µn(k) > 0) =

∞
∑

n=1

1

σn + 1
< ∞

The fact that the mean renewal time is finite, allows us to apply well-known classical
renewal theory results (see Feller (1966) Ch. XI. 8, 365–366) and obtain

Theorem 3. If
∞
∑

n=1

1

σn

< ∞

then for {Z0
n} there exists a proper non-degenerate limiting distribution given by

lim
n→∞

P (Z0
n = k) =

1

ETk

∞
∑

j=0

P (µj(1) = k, T1 > j),

where ETk, k = 0, 1, . . . are from (4).

Case 2.
∞
∑

n=1

1/σn = ∞. Note that now the mean renewal time is infinite. Let us

assume that as k → ∞

bk = L(k) ↑ ∞,

where L(x) is a slowly varying at infinity function (sfv). Then

σn =

n
∑

k=0

bk ∼ nL(n)

and (see Feller (1966) [1], Ch. VIII. 9, 272–273)
n
∑

k=0

1

σk + 1
= L∗(n)
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where L∗(n) is an increasing svf, such that 1/L(n) = o(L∗(n)).
We are in a position to state

Theorem 4. If bn = L(n) ↑ ∞ and
∞
∑

n=1

1

σn

= ∞

then for 0 < x < 1

lim
n→∞

P

(

L∗(M(Z0
n))

L∗(n)
< x

)

= x ,

where M(·) is the inverse function of xL(x) for x > 0.

The proof of Theorem 4 follows closely that of Theorem 5.2 (ii) in Mitov (1999) [3]
and it is omitted here.

Example 1. Let bk = logβ k, where 0 < β < 1. Then σn ∼ n logβ n and L∗(n) =
log1−β n/(1 − β). In addition, the function x logβ x is increasing on [1,∞) and has an
inverse Mβ(x), say. Therefore, Theorem 4 leads to

lim
n→∞

P

(

log1−β
(

Mβ(Z0
n)
)

log1−β(n)
< x

)

= x ,

for 0 < x < 1.

Example 2. Let bk = log k. Then σn ∼ n log n and L∗(n) = log log n. Let M1(x) be
the inverse of x log x. Now, Theorem 4 implies for 0 < x < 1

lim
n→∞

P

(

log log M1(Z
0
n)

log log n
< x

)

= x .

5. Concluding remarks. We would like to point out the intermediate position of
the results between those in the finite and infinite variance cases. It is clear that the rate
at which the offspring variance increases pulls the asymptotic behavior of the process

to either one of the above well-studied cases. More precisely, if
∞
∑

n=0

P (µn(k) > 0) < ∞

then the results are similar to those in the finite variance case. If the offspring variance

increases faster, such that
∞
∑

n=0

P (µn(k) > 0) = ∞, then the results are similar to the

ones when the variance is infinite.
In the critical case the assumption for an increasing variance can be stated in a more

general setting considering an offspring pgf of the form

(5) fn(s) = s + (1 − s)1+αLn(
1

1 − s
), 0 < α ≤ 1

where {Ln(x)} is a sequence of slowly varying at infinity functions (sfv) in x. Note that
fn(s) can be represented in the form (5) as

fn(s) = s +
1

1 − s + b−1
n

(1 − s)2

and

lim
s→1

1

1 − s + b−1
n

= bn < ∞ .
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КРИТИЧЕСКИ РАЗКЛОНЯВАЩ СЕ ПРОЦЕС С РАСТЯЩА

ДИСПЕРСИЯ НА ПОТОМСТВОТО

Косто В. Митов, Георги П. Янев

Разглежда се критически процес на Галтон-Уотсън с растяща дисперсия на по-

томството, в частния случай, когато разпределението на потомците е геометрич-

но. Оказва се, че с увеличаването на дисперсията вероятността за неизраждане

намалява по-бързо с времето. Получени са гранични теореми за процеса при

допускане на обща имиграция и на имиграция, зависеща от състоянието.
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