I-FIXED NOT I-CRITICAL VERTICES*

Vladimir Dimitrov Samodivkin

If a vertex x of a graph G is i-fixed and incident only to bridges, then x is i-critical.

1. Introduction. For a graph theory terminology not presented here we follow [2]. All graphs discussed here are finite and undirected with no loops or multiple edges. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. If $X \subseteq V(G)$ then $\langle X, G\rangle$ is the induced subgraph of G with the vertex set X. For a vertex v of G its neighborhood $N(v, G)$ is $\{x \in V(G) \mid v x \in E(G)\}$ and its closed neighborhood $N[v, G]$ is $N(v, G) \cup\{v\}$. For a set $S \subseteq V(G)$, its open neighborhood $N(S, G)$ is the set of all vertices adjacent to any vertex in S, and its closed neighborhood $N[S, G]$ is $N(S, G) \cup S$. A set $S \subseteq V(G)$ is a dominating set of a graph G if $N[S, G]=V(G)$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set of G. A dominating set S is an independent dominating set ($i d$-set) if no two vertices in S are adjacent, that is, S is an independent set. The independent domination number $i(G)$ of a graph G is the minimum cardinality of an $i d$-set of G. A set S of vertices in a graph G is a vertex neighborhood set (n-set) if $G=\bigcup_{v \in S}\langle N[v, G], G\rangle$. The vertex neighborhood number $n_{0}(G)$ of G is the minimum cardinality of an n-set.

We shall employ e to represent an element, either a vertex or an edge, of a graph G and t to be the cardinality of a set of elements with some prescribed property. Then a t-set is a set with that property. Following Sampathkumar ([2], pp. 291), an element e of G is:
(i) t-critical if $t(G-e) \neq t(G)$;
(ii) t^{+}-critical if $t(G-e)>t(G)$;
(iii) t^{-}-critical if $t(G-e)<t(G)$;
(iv) t-fixed if e belongs to every t-set;
(v) t-free if e belongs to some t-set but not to all t-sets;
(vi) t-totally free if e belongs to no t-set.

Sampathkumar and Neerlagi [3] have studied the relationship among such types of elements when $t=\gamma$ or $t=n_{0}$. Here we shall be concerned with the independent domination number. For a graph G we define:
$\mathcal{I}(G)$ - the set of all i-sets of G;
$I(G)=\{x \in V(G) \mid x$ belongs to some i-set of $G\}$.

[^0]$I N(G)=\{x \in V(G) \mid x$ is i - totally free $\} ;$
$I K(G)=\{x \in V(G) \mid x$ is i-fixed $\} ;$
$I_{0}(G)=\{x \in V(G) \mid x$ is i-free and $i(G-x)=i(G)\} ;$
$I_{-1}(G)=\{x \in V(G) \mid x$ is i-free and $i(G-x)=i(G)-1\} ;$

$I K_{p}(G)=\left\{\begin{array}{lll}\{x \in V(G) \mid i(G-x)=i(G)+p\} & \text { for } & p \geq 1 \\ \{x \in \operatorname{IK}(G) \mid i(G-x)=i(G)+p\} & \text { for } & p \leq 0\end{array}\right.$
We shall begin with two lemmas.
Lemma $\mathbf{A}([2])$. Let G be a graph of an order at least two and $x \in V(G)$. Then $i(G)-1 \leq i(G-x) \leq|V(G)|-1$.

Lemma 1. Let G be a graph with $n \geq 2$ vertices. Then $\operatorname{IK}(G)=\bigcup_{p=-1}^{n-2} I K_{p}(G)$.
Proof. Let $x \in V(G)$. Then by Lemma A, it follows that:

$$
\begin{equation*}
i(G-x)=i(G)+r \text { for some } r,-1 \leq r \leq n-2 \tag{1}
\end{equation*}
$$

If $x \in I K(G)$, then by (1) $x \in \bigcup_{p=-1}^{n-2} I K_{p}(G)$. Let now $x \in I K_{p}(G)$. Hence by (1): $-1 \leq p \leq n-2$. Let $p \geq 1$. Then every $i d$-set M of G such that $x \notin M$ is an $i d$-set of $G-x$. Hence $|M| \geq i(G-x)>i(G)$ and then x is i-fixed.

By the above definitions and lemmas we have:
Proposition 2. For a graph G of an order at least two:

1) $I(G)=I_{-1}(G) \cup I_{0}(G) \cup I K(G)$.
2) $\{x \in V(G) \mid i(G-x)=i(G)\}=I N(G) \cup I_{0}(G) \cup I K_{0}(G)$.
3) $\{x \in V(G) \mid x$ is i-free $\}=I_{-1}(G) \cup I_{0}(G)$.
4) $\left\{x \in V(G) \mid x\right.$ is i^{-}-critical $\}=I_{-1}(G) \cup I K_{-1}(G)$.

Proposition 3. Let G be a graph, $|V(G)| \geq 2$ and $x \in V(G)$.

1) x is i-fixed if and only if $N(x, G) \subseteq I N(G)$.
2) Let x be i^{-}-critical. Then $N(x, G) \subseteq I N(G-x)$.
3) Let $x \in I K_{0}(G)$. Then x is incident to no pendant edge. If $Q \in \mathcal{I}(G-x)$ then $Q \cup\{x\}$ is an id-set of G.

Proof. 1) Let x be i-fixed. Then for every $M \in \mathcal{I}(G): M \cap N(x, G)=\emptyset$. Hence $N(x, G) \subseteq I N(G)$.

Let $N(x, G) \subseteq I N(G)$. Then x belongs to every i-set. Hence x is i-fixed.
2) Let $M \in \mathcal{I}(G-x)$. Then $|M|=i(G)-1$ and therefore $M \cap N(x, G)=\emptyset$. Hence $N(x, G) \subseteq I N(G-x)$.
3) Let $x y \in E(G)$. Suppose $N(y, G)=\{x\}$. Let $M \in \mathcal{I}(G-x)$. Hence $y \in M$ and then M is an $i d$-set of G with $|M|=i(G-x)=i(G)$. Therefore $M \in \mathcal{I}(G)$ and $x \notin M$ - a contradiction. So, $\operatorname{deg}(y, G)>1$.

Suppose $N(x, G)=\{y\}$. Let $M \in \mathcal{I}(G)$. Then $x \in M, y \notin M$ and $|M|>1$. Hence $N[M-\{x\}, G]=V(G)-\{x, y\}$ - otherwise x is i^{-}-critical. But then $S=(M-\{x\}) \cup\{y\} \in$ $\mathcal{I}(G)$ and $x \notin S$ - a contradiction. So, $\operatorname{deg}(x, G)>1$.

Since $x \in I K_{0}(G)$, if $Q \in \mathcal{I}(G-x)$ then $|Q|=i(G-x)=i(G)$ and $M \cap N(x, G)=\emptyset$. Hence $Q \cup\{x\}$ is an $i d$-set of G.

Theorem 4. Let G_{1} and G_{2} be vertex disjoint graphs, $x_{j} \in V\left(G_{j}\right), j=1,2$ and $G=\left(G_{1} \cup G_{2}\right)+x_{1} x_{2}$. If $x_{1} \in I K_{0}(G)$, then $x_{1} \in I K_{0}\left(G_{1}\right)$ and $x_{2} \in \operatorname{IN}(G) \cap I N\left(G_{2}\right)$.

Proof. Let $x_{1} \in I K_{0}(G)$ and $i\left(x_{1}, G\right)=\min \left\{\mid M \| M\right.$ is an $i d$-set of G and $\left.x_{1} \in M\right\}$. By Proposition 3: $x_{2} \in I N(G)$ and $\operatorname{deg}\left(x_{j}, G\right)>1$ for $j=1,2$. Then:

$$
\begin{equation*}
i(G)=i\left(G-x_{1}\right)=i\left(G_{1}-x_{1}\right)+i\left(G_{2}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
i(G)=i\left(x_{1}, G_{1}\right)+i\left(G_{2}-x_{2}\right) \tag{3}
\end{equation*}
$$

Suppose $x_{1} \in I_{0}\left(G_{1}\right) \cup I N\left(G_{1}\right)$. Then by (2): $i(G)=i\left(G_{1}\right)+i\left(G_{2}\right)$. Let $x_{1} \notin M_{1} \in \mathcal{I}\left(G_{1}\right)$ and $M_{2} \in \mathcal{I}\left(G_{2}\right)$. Then $M=M_{1} \cup M_{2}$ is an $i d$-set of G and $|M|=i\left(G_{1}\right)+i\left(G_{2}\right)=i(G)$. Hence $M \in \mathcal{I}(G)$ and $x_{1} \notin M$ - a contradiction.

Suppose $x_{1} \in I_{-1}\left(G_{1}\right) \cup I K_{-1}\left(G_{1}\right)$. Then by (2) and (3): $i(G)=i\left(G_{1}\right)+i\left(G_{2}\right)-1$ and $i(G)=i\left(G_{1}\right)+i\left(G_{2}-x_{2}\right)$. Hence $i\left(G_{2}-x_{2}\right)=i\left(G_{2}\right)-1$ and then $x_{2} \in I_{-1}\left(G_{2}\right) \cup$ $I K_{-1}\left(G_{2}\right)$. Let $M_{j} \in \mathcal{I}\left(G_{j}-x_{j}\right), j=1,2$. By Proposition 3 the set $L=M_{1} \cup M_{2} \cup\left\{x_{2}\right\}$ is an $i d$-set of G with $|L|=i(G)$. Hence $L \in \mathcal{I}(G)$ and $x_{1} \notin L$ - a contradiction.

So, $x_{1} \in I K_{p}\left(G_{1}\right)$ for some $p \geq 0$. Now, by (2) and (3) it follows that $i(G)=$ $i\left(G_{1}\right)+i\left(G_{2}\right)+p$ and $i(G)=i\left(G_{1}\right)+i\left(G_{2}-x_{2}\right)$. Hence $i\left(G_{2}-x_{2}\right)=i\left(G_{2}\right)+p$. Suppose $x_{2} \notin I N\left(G_{2}\right)$. Let then $x_{2} \in M_{2} \in \mathcal{I}\left(G_{2}\right)$ and $M_{1} \in \mathcal{I}\left(G_{1}-x_{1}\right)$. Hence $M=M_{1} \cup M_{2}$ is an $i d$-set of G with $|M|=i\left(G_{1}\right)+p+i\left(G_{2}\right)=i(G)$ and then $M \in \mathcal{I}(G)$. But $x_{1} \notin M$ - a contradiction. Hence $x_{2} \in I N\left(G_{2}\right)$ and then $i\left(G_{2}-x_{2}\right)=i\left(G_{2}\right)$. So $p=0$ and we have the result.

Corollary 5. Let a vertex x of a graph G be incident only to bridges. Then $x \notin$ $I K_{0}(G)$.

Proof. Suppose $x \in I K_{0}(G)$. Let e_{1}, \ldots, e_{k} be the edges which are incident to x. Because of Proposition 3-k>1. Let $G=H_{0}$ and H_{i} be the component of $H_{i-1}-e_{i}$ which contains x, where $i=1, \ldots, k-1$. By Theorem 4 we have that $x \in I K_{0}\left(H_{i}\right)$ for $i=1, \ldots, k-1$. Since x is an endvertex of H_{k-1}, by Proposition 3 follows that $x \notin I K_{0}\left(H_{k-1}\right)$. So we have a contradiction.

Corollary 6. For every tree T of order $n \geq 2: I K_{0}(T)=\emptyset$.
Example. For $n \geq 12$, let S_{n} be a graph defined as follows: $V\left(S_{n}\right)=\left\{a, b, c, i_{1}, \ldots, i_{7}\right.$, $\left.j_{11}, \ldots, j_{n}\right\}$ and $E\left(S_{n}\right)=\left\{i_{1} i_{2}, i_{1} i_{3}, a i_{2}, \ldots, a i_{5}, i_{4} i_{7}, i_{5} i_{7}, b i_{6}, b i_{7}, i_{7} j_{11}, c j_{11}, \ldots, c j_{n}\right\}$. It is easy to see that a cutvertex $a \in I K_{0}\left(S_{n}\right)$.

Counterexample. In [1] (see also [2] pp.292), it is claimed that if a cutvertex x of G is γ-fixed then x is γ^{+}-critical. Note that this is false. It is easy to see that for a graph $S_{n}, n \geq 12$, the cutvertex a is γ-fixed and $\gamma(G-a)=\gamma(G)$.

REFERENCES

[1] D. Bauer, F. Harary, J. Nieminen, C.L. Suffel. Domination alteration sets in graphs. Discrete Mathematics, 47 (1983), 153-161.
[2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Domination in graphs (Advanced topics). New York, Marcel Dekker, 1998.
[3] E. Sampathkumar, P. S. Neerlagi. Domination and neighborhood critical, fixed, free and totally free points. Sankhya, 54 (1992), 403-407.

```
V.D.Samodivkin
University of Architecture and Civil Engineering
1, Hr. Smirnenski Blv
1421 Sofia, Bulgaria
e-mail: vlsam_fte@uacg.acad.bg
```


I-ФИКСИРАНИ НЕ I-КРИТИЧНИ ВЪРХОВЕ

Владимир Димитров Самодивкин

Ако връх на граф е i-фиксиран и е инцидентен само с мостове, то той е i критичен.

[^0]: *Math. Subject Classification: 05C69

