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I-FIXED NOT I-CRITICAL VERTICES"
Vladimir Dimitrov Samodivkin

If a vertex x of a graph G is i-fixed and incident only to bridges, then z is i-critical.

1. Introduction. For a graph theory terminology not presented here we follow [2].
All graphs discussed here are finite and undirected with no loops or multiple edges. We
denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. If
X C V(Q) then (X, G) is the induced subgraph of G with the vertex set X. For a vertex
v of G its neighborhood N(v,G) is {z € V(G)|vxr € E(G)} and its closed neighborhood
N[v,G] is N(v,G) U {v}. For a set S C V(G), its open neighborhood N(S,G) is the
set of all vertices adjacent to any vertex in S, and its closed neighborhood N[S,G] is
N(S,G)US. A set S C V(G) is a dominating set of a graph G if N[S,G] = V(G). The
domination number v(G) of a graph G is the minimum cardinality of a dominating set of
G. A dominating set S is an independent dominating set (id-set) if no two vertices in S
are adjacent, that is, S is an independent set. The independent domination number i(G)
of a graph G is the minimum cardinality of an id-set of G. A set S of vertices in a graph

G is a vertex neighborhood set (n-set) if G = |J (N[v,G],G). The vertex neighborhood
vES
number no(G) of G is the minimum cardinality of an n-set.

We shall employ e to represent an element, either a vertex or an edge, of a graph G
and t to be the cardinality of a set of elements with some prescribed property. Then a
t-set is a set with that property. Following Sampathkumar ([2], pp. 291), an element e
of G is:

(i) t-critical if t(G — e) # t(G);
i1) tT-critical if t(G — e) > t(G);

iii) t—-critical if t(G — e) < t(G);
1) t-fized if e belongs to every t-set;
v) t-free if e belongs to some t-set but not to all ¢-sets;

(vi) t-totally free if e belongs to no t-set.

Sampathkumar and Neerlagi [3] have studied the relationship among such types of
elements when ¢ = v or t = ng. Here we shall be concerned with the independent
domination number. For a graph G we define:

Z(G) - the set of all i-sets of G;

I(G) = {z € V(G)|x belongs to some i-set of G}.
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IN(G) ={z € V(Q)|z is i - totally free };
IK(G) = {z € V(G)|x is i-fixed };
Iy(G) = {z € V(G)|x is i-free and i(G — z) = i(G)};

I4(G)

{z € V(GQ)|z is i-free and i(G — z) = i(G) — 1};
K (G):{ {z e V(@)|i(G—-2z)=i(G)+p} for p>1
P {z € IK(G)|i(G —x) =i(G) +p} for p<O0
We shall begin with two lemmas.
Lemma A ([2]). Let G be a graph of an order at least two and x € V(G). Then
i(G)—1<i(G—x) <|V(G)—1.

n—2
Lemma 1. Let G be a graph with n > 2 vertices. Then IK(G) = | I1Ky(G).
p=—1

Proof. Let x € V(G). Then by Lemma A, it follows that:

(1) i(G—2)=1i(G)+r for somer,—1<r<n-—2.

n—2
If 2 € IK(G), then by (1) x € |J IKp(G). Let now =z € IK,(G). Hence by (1) :
p=—1

—1<p<n-—2 Letp>1. Then every id-set M of G such that x ¢ M is an id-set of
G — x. Hence |M| > i(G — z) > i(G) and then z is i-fixed.
By the above definitions and lemmas we have:

Proposition 2. For a graph G of an order at least two:

1) I(G) =11(G)U L1 (G) UTK(QG).

2) {z e V(G))i(G —z) =i(G)} = IN(G) U IH)(G) UIKy(Q).
3) {z e V(G)|z is i-free } = I_1(G) U IH(G).

) {z e V(Q)|z is i~ -critical } = I_1(G) UTK_41(G).

Proposition 3. Let G be a graph, |V(G)| > 2 and x € V(G).

1) x is i-fized if and only if N(z,G) C IN(G).

2) Let x be i~ -critical. Then N(x,G) CIN(G — z).

3) Let © € IKo(G). Then x is incident to no pendant edge. If Q € I(G — x) then
QU {z} is an id-set of G.

Proof. 1) Let z be i-fixed. Then for every M € Z(G) : M N N(z,G) = (). Hence
N(z,G) C IN(G).

Let N(xz,G) C IN(G). Then x belongs to every i-set. Hence x is i-fixed.

2) Let M € Z(G — z). Then |M| = i(G) — 1 and therefore M N N(z,G) = (). Hence
N(z,G) CIN(G — x).

3) Let zy € E(G). Suppose N(y,G) = {z}. Let M € Z(G — z). Hence y € M and
then M is an id-set of G with |[M| = i(G — 2) = i(G). Therefore M € I(G) and = ¢ M
— a contradiction. So, deg(y, G) > 1.

Suppose N(z,G) = {y}. Let M € Z(G). Then x € M,y ¢ M and |M| > 1. Hence
N[M—{z},G] = V(G)—{x,y} - otherwise x is i ~-critical. But then S = (M —{z})U{y} €
Z(G) and x ¢ S - a contradiction. So, deg(z,G) > 1.

Since x € IKo(Q), if Q € Z(G —x) then |Q] = i(G—x) = i(G) and MNN(z,G) = 0.
Hence Q U {z} is an id-set of G.
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Theorem 4. Let Gy and G be vertex disjoint graphs, z; € V(G;), j = 1,2 and
G = (G1 U GQ) + T172. If$1 S IKQ(G), then x1 € IKo(Gl) and xo9 € IN(G) ﬂIN(GQ).

Proof. Let 21 € IKy(G) and i(z1,G) = min{|M||M is an id-set of G and z1 € M }.
By Proposition 3: 2 € IN(G) and deg(x;,G) > 1 for j =1,2. Then:

(2) i(G) =i(G —21) =i(G1 — 21) +i(G2)
and
(3) Z(G) :Z(’JJ1,G1)+Z(G27=’L'2)

Suppose z1 € Io(G1)UIN(G1). Then by (2): i(G) = i(G1)+i(G2). Let 1 ¢ My € I(G1)
and My € T(G3). Then M = M; U Ms is an id-set of G and |M| = i(G1) +i(G2) = i(G).
Hence M € Z(G) and x1; ¢ M — a contradiction.

Suppose 21 € I_1(G1) UIK_1(G1). Then by (2) and (3): i(G) = i(G1) + i(G2) — 1
and i(G) = i(G1) +i(Gg — z2). Hence i(Gg — x2) = i(G2) — 1 and then z9 € I_1(G2) U
IK_1(G2). Let M; € Z(Gj — z;),j = 1,2. By Proposition 3 the set L = M; UMy U {x2}
is an id-set of G with |L| = i(G). Hence L € Z(G) and 1 ¢ L — a contradiction.

So, 1 € IK,(G1) for some p > 0. Now, by (2) and (3) it follows that i(G) =
i(G1) +i(G2) +p and i(G) = i(G1) +i(G2 — x2). Hence i(G2 — z2) = i(G2) + p. Suppose
29 ¢ IN(G3). Let then xo € My € Z(G2) and My € Z(Gy — z1). Hence M = My U M,
is an id-set of G with |[M| =i(G1) +p+i(G2) = i(G) and then M € Z(G). But z1 ¢ M
- a contradiction. Hence zo € IN(G2) and then i(G2 — z2) = i(G2). So p = 0 and we
have the result.

Corollary 5. Let a vertex x of a graph G be incident only to bridges. Then x &
IKy(G) .

Proof. Suppose z € IKy(G). Let eq,...,er be the edges which are incident to x.
Because of Proposition 3 - £ > 1. Let G = Hy and H; be the component of H; 1 — ¢;
which contains x, where i = 1,...,k — 1. By Theorem 4 we have that x € IKy(H;)
for ¢+ = 1,...,k — 1.Since = is an endvertex of Hj_1, by Proposition 3 follows that
x ¢ IKo(Hy—1). So we have a contradiction.

Corollary 6. For every tree T of order n > 2: IKo(T) =10 .

Example. Forn > 12, let S,, be a graph defined as follows: V' (S,,) = {a, b, ¢, i1,. .., i,
jn, e ;Jn} and E(Sn) = {’L'liQ, ilig, aig, ceey ai5, i4i7, i5i7, bi@, bi77 i?jll, lel; ce ,Cjn}. It
is easy to see that a cutvertex a € IKy(S,,).

Counterexample. In [1] (see also [2] pp.292), it is claimed that if a cutvertex x of
G is v-fixed then x is yvT-critical. Note that this is false. It is easy to see that for a graph
Sn, n > 12, the cutvertex a is y-fixed and v(G — a) = v(G).
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I-DNNKCUPAHUN HE [-KPUTNYHN BBbPXOBE

Baagumup Jumurpos CamoauBKuH

Ako Bpbx Ha rpad e i-pUKCUpPAH U € UHIUJIEHTEH CaMO C MOCTOBE, TO TOH € i-
KPUTHYEH.
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