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In the present work we study the concept of Pareto optimality at decision making in
a society with finitely many individuals. We consider the preference relations of the
individuals and three versions of the Pareto optimality alternatives – weak, strong
and full.

1. Introduction. We consider a society with n individuals. Let I be a set of
individuals and |I| = n ≥ 2, let A be a set of alternatives and |A| > 2, let R = {Rk}n

k=1

be a profile of individual preference relations on A and each ik ∈ I has binary relation Rk

such that for all alternatives x, y ∈ A, there is xRky if and only if ik ∈ I preferences x by
y. The set A can be finite or infinite. Any relation Rk is reflective (if x ∈ A, then xRkx),
transitive (if x, y, z ∈ A, xRky and yRkz, then xRkz) and complete (if x, y ∈ A, then
xRky holds or yRkx holds). We denote the asymmetric part of Rk by P k (for x, y ∈ A,
there is xP ky if and only if xRky holds and yRkx does not hold). For P k of ik ∈ I,
there is xP ky if and only if ik ∈ I strictly preferences x by y. The relation P k of ik ∈ I
is transitive. We denote the symmetric part of Rk by Ik (for x, y ∈ A, there is xIky if
and only if xRky and yRkx hold). For relation Ik of ik ∈ I, there is xIky if and only if
ik ∈ I indifferences for x and y. The relation Ik of ik ∈ I is reflective and transitive.

We will consider two examples.
Example 1. Let us consider an exchange system. This system consists of finitely

many agents and they exchange goods between each other. The agents form a society
and they are the individuals. Let each agent ik ∈ I has endowment wk ∈ ℜm

+ and v =
n
∑

i=1

wi ∈ ℜm
++. Here H = {x

(

x1, x2, . . . , xn
)

∈ ℜmn
+ :

n
∑

i=1

xi = v} is a set of individually

rational allocations, where agent ik ∈ I owns of the goods xk
(

xk
1 , xk

2 , . . . , xk
m

)

∈ ℜm
+ , a

number xk
j ≥ 0 shows the quantity of good gj ∈ G property of this agent. Thus H is a

set of alternatives. Here we have two cases:
First, if the goods are perfecting divisible, then a set of alternatives is infinite;
Second, if the goods are not perfecting divisible, then a set of alternatives is finite.
Example 2. Let us consider a game model. It consists of finitely many players and

they form a society. In this model we have “player” = “individual”. Let each player
ik ∈ I has a set of strategies Mk. Here M1 × M2 × · × Mn is a set of alternatives.
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2. Optimality alternatives. The set Rk (x) = {y ∈ A : yRkx} we will call the set

of weakly preference of ik ∈ I. The sets Rk (x) and
n
⋂

k=1

Rk (x) are nonempty subsets of

A, x ∈ Rk (x) for all ik ∈ I, x ∈
n
⋂

k=1

Rk (x).

The set Pk (x) = {y ∈ A : yP kx} we will call the set of strict preference of ik ∈ I.

The sets Pk (x) and
n
⋂

k=1

Pk (x) can be empty, x /∈ Pk (x) for all ik ∈ I, x /∈
n
⋂

k=1

Pk (x).

The set Ik (x) = {y ∈ A : yIkx} we will call the set of indifference of ik ∈ I. The sets

Ik (x) and
n
⋂

k=1

Ik (x) are nonempty subsets of A, x ∈ Ik (x) for all ik ∈ I, x ∈
n
⋂

k=1

Ik (x).

Definition 1. An alternative y ∈ A weakly dominates an alternative x ∈ A if and
only if yRkx for all ik ∈ I and y 6= x. We call that the alternative x ∈ A is weak
optimality if and only if there does not exist y ∈ A such that y weakly dominates x. The
set of the weak optimality alternatives of A will be denoted by Ow.

It is easy to show that if x, y ∈ A, then y weakly dominates x if and only if y ∈
(

n
⋂

k=1

Rk (x)

)

\{x}.

Theorem 1. Let x ∈ A, for weak optimality alternatives the following statements
are equivalent:

(a) x ∈ Ow;
(b) {y ∈ A : yRkx for all ik ∈ I and y 6= x} is empty.

Proof. From Definition 1 it follows the proof of Theorem 1.

Theorem 2. Let x ∈ A, x ∈ Ow if and only if {x} =
n
⋂

k=1

Rk (x).

Proof. Let x ∈ Ow therefore the set
{y ∈ A : yRkx for all ik ∈ I and y 6= x}

is empty. From x ∈
n
⋂

k=1

Rk (x) it follows {x} =
n
⋂

k=1

Rk (x).

Conversely, let {x} =
n
⋂

k=1

Rk (x). From x ∈
n
⋂

k=1

Rk (x) it follows that the set

{y ∈ A : yRkx for all ik ∈ I and y 6= x}
is empty. As a result we obtain x ∈ Ow.

Definition 2. An alternative y ∈ A strongly dominates an alternative x ∈ A if and
only if yRkx for all ik ∈ I and yPmx for some im ∈ I. We call that the alternative
x ∈ A is strong optimality if and only if there does not exist y ∈ A such that y strongly
dominates x. The set of the strong optimality alternatives of A will be denoted by Os.

It is easy to show that if x, y ∈ A, then y strongly dominates x if and only if y ∈
(

n
⋂

k=1

Rk (x)

)

∩

(

n
⋃

k=1

Pk (x)

)

.

Theorem 3. Let x ∈ A, for strong optimality alternatives the following statements
are equivalent:

(a) x ∈ Os;
(b) {y ∈ A : yRkx for all ik ∈ I and yPmx for some im ∈ I} is empty.
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Proof. From Definition 2 it follows the proof of Theorem 3.

Definition 3. An alternative y ∈ A fully dominates an allocation x ∈ A if and only
if yP kx for all ik ∈ I. We call that the alternative x ∈ A is full optimality if and only if
there does not exist y ∈ A such that y fully dominates x. The set of the full optimality
alternatives of A will be denoted by Of .

It is easy to show that if x, y ∈ A, then y fully dominates x if and only if y ∈
n
⋂

k=1

Pk (x).

Theorem 4. Let x ∈ A, for full optimality allocations the following statements are
equivalent:

(a) x ∈ Of ;
(b) {y ∈ A : yP kx for all ik ∈ I} is empty.

Proof. From Definition 3 it follows the proof of Theorem 4.

Theorem 5. Let x ∈ A, x ∈ Of if and only if the set
n
⋂

k=1

Pk (x) is empty.

Proof. From Theorem 4 it follows the proof of Theorem 5.

3. Main results. We will consider some characteristics of the Pareto optimality
alternatives.

Theorem 6. (a) If x ∈ Ow and y ∈
n
⋂

k=1

Rk (x), then y = x;

(b) If x ∈ Os and y ∈
n
⋂

k=1

Rk (x), then y ∈ Os and y ∈
n
⋂

k=1

Ik (x);

(c) If x ∈ Of and y ∈
n
⋂

k=1

Rk (x), then y ∈ Of and y ∈
n
⋃

k=1

Ik (x).

Proof. (a) From x ∈ Ow and Theorem 2 we have {x} =
n
⋂

k=1

Rk (x). Thus, there is

y ∈
n
⋂

k=1

Rk (x) = {x} therefore y = x.

(b) From x ∈ Os and Theorem 3 it follows the set {z ∈ A : zRkx for all ik ∈ I
and zPmx for some im ∈ I} is empty. We have yRkx for all ik ∈ I, therefore the set
{z ∈ A : zRky for all ik ∈ I and zPmy for some im ∈ I} is empty too. As a result we
obtain y ∈ Os.

Let us assume that y /∈
n
⋂

k=1

Ik (x). Thus, from y ∈
n
⋂

k=1

Rk (x) and y /∈
n
⋂

k=1

Ik (x)

it follows there exists im ∈ I such that yPmx. This contradicts to x ∈ Os, therefore

y ∈
n
⋂

k=1

Ik (x).

(c) From x ∈ Of and Theorem 4 it follows the set {z ∈ A : zP kx for all ik ∈ I} is
empty. We have yRkx for all ik ∈ I, therefore the set {z ∈ A : zP ky for all ik ∈ I} is
empty too. As a result we obtain y ∈ Of .

Let us assume that y /∈
n
⋃

k=1

Ik (x), i.e. y /∈ Ik (x) for all ik ∈ I. Thus, from y ∈

n
⋂

k=1

Rk (x), i.e. y ∈ Rk (x) for all ik ∈ I and y /∈ Ik (x) for all ik ∈ I it follows yP kx for

all ik ∈ I. This contradicts to x ∈ Of , therefore y ∈
n
⋃

k=1

Ik (x).
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Theorem 7. If x ∈ Ow, then {x} =
n
⋂

k=1

Ik (x).

Proof. Let x ∈ Ow and let us assume {x} 6=
n
⋂

k=1

Ik (x). From {x} 6=
n
⋂

k=1

Ik (x) it

follows there exists y ∈ A such that y ∈
n
⋂

k=1

Ik (x) and x 6= y. From
n
⋂

k=1

Ik (x) ⊂
n
⋂

k=1

Rk (x) we obtain y ∈
n
⋂

k=1

Rk (x) and x 6= y. This contradicts to x ∈ Ow.

Theorem 8. Ow ⊂ Os ⊂ Of .

Proof. First, let x ∈ Ow and let us assume that x /∈ Os. Following there exists
y ∈ A such that yRkx for all ik ∈ I and yPmx for some im ∈ I. As a result we have

y ∈
n
⋂

k=1

Rk (x) = {x}, therefore x = y. This contradicts to yP mx therefore x ∈ Os.

Second, let x ∈ Os and let us assume that x /∈ Of . Following there exists y ∈ A such
that yP kx for all ik ∈ I. We obtain yRkx for all ik ∈ I and yPmx for some im ∈ I. This
contradicts to x ∈ Os therefore x ∈ Of .

Theorem 9. For x ∈ A the following statements hold:

(a) x ∈ Ow if and only if
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) and

∣

∣

∣

∣

n
⋂

k=1

Rk (x)

∣

∣

∣

∣

= 1;

(b) x ∈ Os if and only if
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x);

(c) x ∈ Of if and only if
n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x).

Proof. (a) Let x ∈ Ow. From Theorem 2 we have {x} =
n
⋂

k=1

Rk (x). Thus, we have

x ∈
n
⋂

k=1

Ik (x) ⊂
n
⋂

k=1

Rk (x) = {x} therefore
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) = {x}. Finally, we

obtain
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) and

∣

∣

∣

∣

n
⋂

k=1

Rk (x)

∣

∣

∣

∣

= 1.

Conversely, let
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) and

∣

∣

∣

∣

n
⋂

k=1

Rk (x)

∣

∣

∣

∣

= 1. From x ∈
n
⋂

k=1

Ik (x) ⊂

n
⋂

k=1

Rk (x) and

∣

∣

∣

∣

n
⋂

k=1

Rk (x)

∣

∣

∣

∣

= 1 we have {x} =
n
⋂

k=1

Rk (x), therefore from Theorem 2 we

obtain x ∈ Ow.

(b) Let x ∈ Os and let us assume
n
⋂

k=1

Ik (x) 6=
n
⋂

k=1

Rk (x). From
n
⋂

k=1

Ik (x) ⊂
n
⋂

k=1

Rk (x)

and
n
⋂

k=1

Ik (x) 6=
n
⋂

k=1

Rk (x) it follows that there exists y ∈
n
⋂

k=1

Rk (x) such that y /∈

n
⋂

k=1

Ik (x). We obtain there exists im ∈ I such that yPmx. As a result we obtain yRkx

for all ik ∈ I and yPmx. This contradicts to x ∈ Os. Finally, we obtain
n
⋂

k=1

Rk (x) =

n
⋂

k=1

Ik (x).
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Conversely, let
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) and let us assume x /∈ Os. Hence, we have

there exists y ∈ A such that y ∈
n
⋂

k=1

Rk (x) and y ∈ Pm (x) for some im ∈ I. From

y ∈ Pm (x) it follows y /∈
n
⋂

k=1

Ik (x). This contradicts to
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) therefore

x ∈ Os.

(c) Let x ∈ Of . If y ∈
n
⋂

k=1

Rk (x), then from Theorem 6.c it follows y ∈
n
⋃

k=1

Ik (x).

Conversely, let
n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x) and let us assume x /∈ Of . Following we

have there exists y ∈ A such that y ∈
n
⋂

k=1

Pk (x). From
n
⋂

k=1

Pk (x) ⊂
n
⋂

k=1

Rk (x) and

n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x) we obtain y ∈
n
⋃

k=1

Ik (x). Thus, we have there exists im ∈ I such

that yImx. As a result we obtain y /∈ Pm (x), i.e. y /∈
n
⋂

k=1

Pk (x). This contradicts to

y ∈
n
⋂

k=1

Pk (x).

Corollary 1. For x ∈ A the following statements hold:

(a) x ∈ Os\Ow if and only if {x} 6=
n
⋂

k=1

Rk (x) and
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x);

(b) x ∈ Os\Ow if and only if
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) and

∣

∣

∣

∣

n
⋂

k=1

Rk (x)

∣

∣

∣

∣

> 1;

(c) x ∈ A\Os if and only if
n
⋂

k=1

Rk (x) 6=
n
⋂

k=1

Ik (x);

(d) x∈Os if and only if {x}=
n
⋂

k=1

Rk (x) or ({x}6=
n
⋂

k=1

Rk (x) and
n
⋂

k=1

Rk (x)=
n
⋂

k=1

Ik (x));

(e) x∈Of\Os if and only if
n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x) and
n
⋂

k=1

Rk (x) 6=
n
⋂

k=1

Ik (x).

Proof. From Theorem 9 it follows the proof of Corollary 1.

Corollary 2. (a) If x ∈ Os and {x} =
n
⋂

k=1

Ik (x), then x ∈ Ow;

(b) If x ∈ Of and
n
⋂

k=1

Ik (x) =
n
⋃

k=1

Ik (x), then x ∈ Os.

Proof. (a) From Theorem 9 we have
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x). From {x} =
n
⋂

k=1

Ik (x)

it follows {x} =
n
⋂

k=1

Rk (x) therefore from Theorem 2 we obtain x ∈ Ow.

(b) From Theorem 9 we have
n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x). From
n
⋂

k=1

Ik (x) ⊂
n
⋂

k=1

Rk (x) ⊂
n
⋃

k=1

Ik (x) and
n
⋂

k=1

Ik (x) =
n
⋃

k=1

Ik (x) it follows
n
⋂

k=1

Rk (x) =
n
⋂

k=1

Ik (x) therefore

from Theorem 9 we obtain x ∈ Os.
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ОПТИМАЛНИТЕ АЛТЕРНАТИВИ ПРИ ВЗЕМАНЕТО НА

РЕШЕНИЕ

Здравко Димитров Славов

В настоящата работа се изучава концепцията за оптималност по Парето при взе-

мането на решение в общество с крайно много индивиди. Разглеждат се отноше-

нията на предпочитания на индивидите и три версии на оптимални алтернативи

според Парето – слаба, силна и пълна.
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