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THE OPTIMALITY ALTERNATIVES AT DECISION
MAKING *

Zdravko Dimitrov Slavov

In the present work we study the concept of Pareto optimality at decision making in
a society with finitely many individuals. We consider the preference relations of the
individuals and three versions of the Pareto optimality alternatives — weak, strong
and full.

1. Introduction. We consider a society with n individuals. Let I be a set of
individuals and || =n > 2, let A be a set of alternatives and |A| > 2, let R = {RF}?_,
be a profile of individual preference relations on A and each i) € I has binary relation R*
such that for all alternatives x,y € A, there is 2Ry if and only if i, € I preferences = by
y. The set A can be finite or infinite. Any relation R” is reflective (if # € A, then xR*x),
transitive (if x,y,2 € A, R¥y and yR*z, then 2R*z) and complete (if z,y € A, then
xRFy holds or yR*x holds). We denote the asymmetric part of R¥ by P* (for z,y € A,
there is P*y if and only if 2R*y holds and yR*z does not hold). For P* of iy € I,
there is 2 P*y if and only if iy € I strictly preferences x by y. The relation P* of i), € I
is transitive. We denote the symmetric part of R¥ by I* (for x,y € A, there is xI*y if
and only if zRFy and yR*z hold). For relation I* of iy € I, there is I*y if and only if
i, € I indifferences for z and y. The relation I* of i), € I is reflective and transitive.

We will consider two examples.

Example 1. Let us consider an exchange system. This system consists of finitely
many agents and they exchange goods between each other. The agents form a society
and they are the individuals. Let each agent i, € I has endowment w* € RT and v =

n n

Y w'e RT,. Here H = {z (2%, 22,...,2™) € RT™ : 3 &' = v} is a set of individually
i=1 i=1

rational allocations, where agent iy, € I owns of the goods z* (m’f,x’g, . ,x’;@) e R a
number :cé“ > 0 shows the quantity of good g; € G property of this agent. Thus H is a
set of alternatives. Here we have two cases:

First, if the goods are perfecting divisible, then a set of alternatives is infinite;

Second, if the goods are not perfecting divisible, then a set of alternatives is finite.

Example 2. Let us consider a game model. It consists of finitely many players and
they form a society. In this model we have “player” = “individual”. Let each player
i € I has a set of strategies M. Here My x My x - x M, is a set of alternatives.
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2. Optimality alternatives. The set Ry, (v) = {y € A : yR*x} we will call the set
of weakly preference of iy, € I. The sets Ry (z) and [\ Rg (z) are nonempty subsets of
k=1
n
A, x € Ry (z) for all iy, € I, z € () Rk (2).

k=1
The set Py () = {y € A : yP*z} we will call the set of strict preference of i) € I.

The sets Py (x) and (n] Py (x) can be empty, « ¢ Py (z) for all i, € I, x ¢ (n] Py (x).
The set Iy, (z) = fy:1€ Az yI*z} we will call the set of indifference of iy é=1} The sets

Iy (z) and ﬁ Ij, (z) are nonempty subsets of A, x € Iy, (z) for all iy, € I, z € ﬁ Ij, (x).
Deﬁnit];zg 1. An alternative y € A weakly dominates an alternative x ekj if and

only if yR*x for all iy, € I and y # x. We call that the alternative x € A is weak

optimality if and only if there does not exist y € A such that y weakly dominates x. The
set of the weak optimality alternatives of A will be denoted by O, .

It is easy to show that if x,y € A, then y weakly dominates x if and only if y €
(A Re@) i,

Theorem 1. Let x € A, for weak optimality alternatives the following statements
are equivalent:

(@) z € Oy;

(b) {y € A : yREx for all iy, € I and y # x} is empty.

Proof. From Definition 1 it follows the proof of Theorem 1.
Theorem 2. Letx € A, x € Oy, if and only if {z} = () Rk (x).
k=1

Proof. Let x € O,, therefore the set

{ye A : yRFxforalli, el andy #x}
n n
is empty. From z € [ Ry (z) it follows {z} = [\ Rk (z).
k=1 k=1

Conversely, let {z} = (| Rk (z). From z € [\ Ry () it follows that the set
k=1 k=1

{ye A : yRFzxforalli, el andy#x}
is empty. As a result we obtain z € O,,.

Definition 2. An alternative y € A strongly dominates an alternative x € A if and
only if yR*x for all iy, € I and yP™x for some i, € I. We call that the alternative
x € A is strong optimality if and only if there does not exist y € A such that y strongly
dominates x. The set of the strong optimality alternatives of A will be denoted by Oy.

It is easy to show that if z,y € A, then y strongly dominates z if and only if y €

(4, 7) (8 7).

Theorem 3. Let x € A, for strong optimality alternatives the following statements
are equivalent:

(a) z € Os;

(b) {y € A : yR*z for all i, € I and yP™x for some i, € I} is empty.
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Proof. From Definition 2 it follows the proof of Theorem 3.

Definition 3. An alternative y € A fully dominates an allocation x € A if and only
if yPEx for all iy, € I. We call that the alternative x € A is full optimality if and only if
there does not exist y € A such that y fully dominates x. The set of the full optimality
alternatives of A will be denoted by Oy.

n

It is easy to show that if z, y € A, then y fully dominates x if and only ify € [ Py ().

k=1

Theorem 4. Let x € A, for full optimality allocations the following statements are
equivalent:

(a) x € Of;

(b) {y € A : yPkx for all iy, € I} is empty.

Proof. From Definition 3 it follows the proof of Theorem 4.

n

Theorem 5. Letx € A, x € Oy if and only if the set (| Py (x) is empty.

k=1

Proof. From Theorem 4 it follows the proof of Theorem 5.

3. Main results. We will consider some characteristics of the Pareto optimality
alternatives.

Theorem 6. (a) Ifx € Oy andy € () Rk (), theny = z;
k=1

(0) If t € Os andy € () Rk (x), theny € Os andy € () I ()
k=1 k=1

(¢c) IfxeOf andy € () Ri(x), theny € Oy andy € | I (x).
k=1 k=1

Proof. (a) From z € O,, and Theorem 2 we have {z} = (| Ry (z). Thus, there is
k=1

y € () Ry (z) = {z} therefore y = .
k=1

(b) From = € Os and Theorem 3 it follows the set {z € A : zR*x for all 4, € I
and zP™x for some i,, € I} is empty. We have yR*xz for all i € I, therefore the set
{z € A: zRFy for all i}, € I and zP™y for some i,, € I} is empty too. As a result we
obtain y € O;.

Let us assume that y ¢ ﬂ I, (). Thus, from y € ﬂ Ry (z) and y ¢ ﬂ Iy, ()
it follows there exists i, € I such that yP™x. This contradlcts to x € O, therefore
ye N I (@),

k=1

(c) From z € Oy and Theorem 4 it follows the set {z € A : zP*z for all iy € I} is
empty. We have yR*z for all i, € I, therefore the set {z € A : zP*y for all i}, € I} is
empty too. As a result we obtain y € Oy.

n
Let us assume that y ¢ U I (z), ie. y ¢ I (x) for all iy € I. Thus, from y €

. k=1
N Rk (z), i.e. y € Ry, (v) for all i, € I and y ¢ I, (z) for all iy € I it follows yP¥z for

all iy € I. This contradicts to x € Oy, therefore y € |J I (2)
k=1
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Theorem 7. Ifx € Oy, then {z} = () I (x).
k=1

Proof. Let z € O, and let us assume {2} # [ Iy (z). From {a} # () Ir (x) it
k=1 k=1
follows there exists y € A such that y € () I (z) and = # y. From () I (z) C
k=1 k=1 k=1

Ry () we obtain y € (| Rk (z) and x # y. This contradicts to z € O,,.
k=1

Theorem 8. O,, C O; C Oy.

Proof. First, let z € O, and let us assume that ¢ O,. Following there exists
y € A such that yR*x for all i, € I and yP™x for some i,, € I. As a result we have

y € () Rk (z) = {z}, therefore x = y. This contradicts to yP™z therefore x € Os.
k=1
Second, let z € Oy and let us assume that x ¢ O;. Following there exists y € A such

that yP¥z for all i, € I. We obtain yRFz for all iy, € I and yP™x for some i,, € I. This
contradicts to x € Oy therefore x € Oy.

Theorem 9. For x € A the following statements hold:

(a) z € Oy if and only if fn] Ry (x) = N Ix (z) and ﬁ Ry (x)
k=1 1 k=1

:1‘

n
)

=

(b) © € O; if and only if ﬁ Ry (z) =

k=1

(¢) x € Of if and only if [\ Rk (z) C
k=1

—

=~
CsliDs
= =
Ol
~— :—/

=
Il
—

Proof. (a) Let z € O,. From Theorem 2 we have {z} = (| Ry (z). Thus, we have
k=1

x € ﬁ[k(x)Clﬁ

Ry (x) = {x} therefore ﬁ Ry (z) = ﬁ I, (z) = {z}. Finally, we
k=1 =1 k=1 k=1

obtain ﬁ Ry (z) = ﬁ Iy, (z) and
k=1 k=1

n
=1. From z € () Iy (z) C
k=1

n
Conversely, let (] Ri () = () I (z) and
k=1 k=1

1

N Ry (x)

k=1

n

(N Rk (x) and
k=1
obtain x € O,.

(b) Let z € Og and let us assume (| I (z) # () Rk (z). From [ I (x) C () Rk (x)
k=1 k=1 k=1 k=1

WD:

n
=1 we have {z} = [\ Rk (z), therefore from Theorem 2 we
k=1

n n n
and () Iz (z) # () Rk (z) it follows that there exists y € [\ R (z) such that y ¢
k=1 k=1 k=1

n
M Ix (z). We obtain there exists i, € I such that yP™z. As a result we obtain yRFx
k=1

n
for all iy, € I and yP™x. This contradicts to € O,. Finally, we obtain (| Ry (z) =
k=1



Conversely, let () Ri (z) = () Ix (z) and let us assume = ¢ Os. Hence, we have
k=1 k=1

n
there exists y € A such that y € () Ri(x) and y € P, (z) for some i, € I. From

k=1
n n n
y € P, (x) it follows y ¢ () Ir (z). This contradicts to (| Rx (z) = [ Ix (z) therefore
k=1 k=1 k=1
z € Oy.
(c) Let x € Oy. If y € () Ry (x), then from Theorem 6.c it follows y € |J I ().
k=1 k=1

n
Conversely, let
k:i

Ry () € | Iy (x) and let us assume = ¢ Oy. Following we
=1 k=1

have there exists y € A such that y € () Py (z). From () Px(z) C () Rk (z) and
k=1 k=1 k=1

N Ri(x) C U Ik (x) we obtain y € |J Iy (x). Thus, we have there exists in, € I such
k=1 k=1 k=1

n
that yI™x. As a result we obtain y ¢ P,, (z), i.e. y ¢ () Pr(x). This contradicts to
k=1

n
ye N Pr(x)
k=1
Corollary 1. For x € A the following statements hold:

(a) z € Os\Oy if and only if {x} # ﬁ Ry (x) and ﬁ Ry (z) = N I (z);
k=1 k=1

1

TDS

n

M R (z)

k=1

(0) z € Os\Oy, if and only if ﬁ Ry (z) = ﬁ I (x) and > 1;
k=1 k=1

(¢) x € A\Os if and only if ﬁ Ry (x) # ﬁ I, (z);
k=1 k=1

(d) z€Os if and only if {x}= ) Ry (x) or {x}# [\ Rk (x) and () R (x)= ) Ir (x));
k=1 k=1 k=1 k=1

(e) x€O04\Os if and only if () Ri(x) C U Ix (z) and () Re (x)# () Ix (x).
k=1 k=1 k=1 k=1

Proof. From Theorem 9 it follows the proof of Corollary 1.

n
Corollary 2. (a) If x € O, and {z} = () I (z), then x € Oy;
k=1

() If t € Oy and () I (z) = U Ix (z), then x € Os.
k=1 k=1

n n n
Proof. (a) From Theorem 9 we have (| Ry (x) = () I (z). From {z} = ) I (z)
k=1 k=1 k=1

n
it follows {z} = [\ Ry (z) therefore from Theorem 2 we obtain z € O,,.
k=1

n n n
(b) From Theorem 9 we have (| Ry (x) C U Ik (z). From () Iy (x) C
k=1 k=1 k=1

T\TD:

1

Ii; (z) therefore
1

Ry (z) C G Ij (z) and ﬁ I (z) = G Ij, (z) it follows fn] Ry (z) =
k=1 k=1 k=1 k=1

733

from Theorem 9 we obtain = € Oq.
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OIITUMAJIHUTE AJITEPHATUBU 1TP11 BSBEMAHETO HA
PEINTEHUE

3apaBko Iuvmurpos CiiaBoB

B Hacrosimara pabora ce m3ydapa KOHIIEMIUSITA 33 onTUMaIHOCT 1o [lapero mpu B3e-
MaHeTO Ha pelleHre B ODIIEeCTBO ¢ KPaifHO MHOIO MHAMBUIM. Pa3riexaT ce oTHOIIe-
HUATA Ha TPEAIIOYUTAHUS Ha WH/IMBUIUTE U TPU BEPCHUU Ha ONTUMAJIHU aJITEPHATUBU
cropes, [lapero — citaba, cuyiHA U TbJIHA.
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