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The purpose of this paper is to present a probabilistic proof under week conditions of
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1. Introduction. Let us consider the following population process {X(t)}t≥0. At
the random times τk, k = 1, 2, . . ., a random number of individuals enters the population.
An individual appearing at time τk becomes an ancestor of Bellman-Harris branching
process with immigration in the state zero (BHBPIO) {Z(t)}t≥0. The process X(t)
counts the number of individuals alive at time t and we call this model, Bellman-Harris
branching process with immigration at zero state and an immigration of renewal type
(BHBPIOR).

The intervals between successive immigration T1 = τ1, T2 = τ2−τ1, . . . and the number
of immigrants ν1, ν2, . . . , are assumed to be mutually independent random variables
(i.r.v.). The r.v. Tk have common distribution function (d.f.) G0(t) and the r.v. νk

are defined by common probability generating function (p.g.f.) f0(s). The BHBPIO
{Z(t)}t≥0 is governed by a lifetime distribution G(t), an offspring p.g.f. h(s), a p.g.f.
f(s) of the random number Yi of immigrants in the state zero and the d.f. K(t) of the
duration Xi of staying in the state zero. It is assumed that

∫ ∞

0 tdK(t) < ∞.
We will use the definition of BHBPIO given by Mitov and Yanev (1985):

Z(t) = ZN(t)+1(t − ξ(t))I{ξ(t)<t}, ξ(t) = SN(t) + XN(t)+1, Z(0) = 0,(1.1)

where {Zi(t)} are independent Bellman-Harris branching processes starting with random

number Yi of particles, N(t) = max{n ≥ 0 : Sn ≤ t}, S0 = 0, Sn =
n

∑

i=1

Ui, Ui = Xi + σi,

σi = inf{ t : Zi(t) = 0} and I{·} is the indicator function.
Let us mention that the process defined by (1.1) could be interpreted as follows:

starting from the zero state, the process stays at that state random time Xi with d.f.
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K(t) and after that a random number Yi of immigrants enters the population, according
to the p.g.f. f(s). The further evolution of each particle is independent and in accordance
with a d.f. G(t) of the life-time and the p.g.f. h(s) of the offspring. Then the process
hits zero after a random period σi, depending of the evolution of the inner BHBP Zi(t).
The following evolution of the process could be presented as the replication of such i.i.d.
cycles.

We introduce the following notations for the p.g.f. of the local characteristics of the
processes

f(s) = EsY1 =

∞
∑

k=1

fksk, h(s) =

∞
∑

k=0

pksk, f0(s) = Esν1 =

∞
∑

k=0

qksk.

It will be assumed:

0 < A = h′(1) < ∞, m = f ′(1) < ∞, m0 = f ′
0(1) < ∞,(1.2)

G(t), G0(t) and K(t) are non-lattice,(1.3)

0 < B = h′′(1) < ∞, n = f ′′(1) < ∞, f ′′
0 (1) = b2 < ∞,(1.4)

r =

∫ ∞

0

xdG(x) < ∞, ã =

∫ ∞

0

xdK(x) < ∞, r0 =

∫ ∞

0

xdG0(x) < ∞.(1.5)

Note that L(t) = P{Xi + σi ≤ t} is non-lattice with L(0) = 0 and denote µ =
∫ ∞

0

tdL(t).

Let us mention that in the critical case for the first time the BHBPIOR was studied
by Weiner (1991). Later on, Slavtchova-Bojkova and Yanev (1994) analyzed the model
X(t) with two types of immigration in the non-critical cases and the problem of deter-
mining necessary and sufficient conditions for the existence of a limiting distribution were
investigated. The results in the subcritical case are proved under the strong assumption
of an existence of higher (n > 2) moments of the individual characteristics.

The aim of this work is to prove the convergence in probability of the subcritical
BHBPIOR X(t) only under assumption that the first and second moments are finite.
The main result is the following theorem.

2. Main result.

Theorem 2.1.Let us assume that (1.2) − (1.5) hold. If A < 1, then

X(t)

t

P
→ c,

(
P
→ means convergence in probability) as t → ∞, where c = mm0r/(1 − A)µr0.

Proof. To start the proof, at first we give an equivalent representation of the process
X(t).

Let {Zij(t)t≥0} be a doubly infinite collection of independent random processes each
having the same distribution as the BHBPIO {Z(t)}t≥0. Furthermore, let all these
processes be assumed to be independent of the sets of r.v. {τi} and {νi}. By going to
the product space, we can assume that all the above mentioned random quantities are
defined on a common probability space.

Define the renewal function n(.) by setting n(t) = k if τk ≤ t < τk+1, k ≥ 0, τ0 = 0.

188



It now follows from the assumptions in section 1, that for each t > 0

X(t) =

n(t)
∑

i=0

νi
∑

j=1

Zij(t − τi) a.s.(2.1)

It is known for the subcritical BHBPIO Z(t) (see Slavtchova and Yanev (1991)), that

lim
t→∞

EZ(t) = mr/(1 − A)µ, µ =

∫ ∞

0

tdL(t),

and there exists stationary limit distribution, i. e.

lim
t→∞

P{Z(t) = k} = Φk = P{Z(∞) = k},

∞
∑

k=0

Φk = 1, Φ(s) =

∞
∑

k=0

Φksk, |s| ≤ 1

and

EZ(∞) = Φ′(1) = mr/(1 − A)µ ≡ a.(2.2)

Let us denote

mij(t) = EZij(t),

S(t) =
1

t

n(t)
∑

i=0

νi
∑

j=1

Zij(t − τi),

S⋆(t) =
1

t

n(t)
∑

i=0

νi
∑

j=1

mij(t − τi).

To prove the theorem one need to check that for every ε > 0

lim
t→∞

P

{∣

∣

∣

∣

X(t)

t
− c

∣

∣

∣

∣

> ε

}

= 0.

We have the following estimation:

P {|S(t) − c| > ε} ≤ P

{

|S(t) − S⋆(t)| >
ε

2

}

+ P

{

|S⋆(t) − c| >
ε

2

}

= I1 + I2

Applying the Chebishev’s inequality for I1 we obtain

I1 ≤
Var[S(t) − S⋆(t)]

ε2
.(2.3)

Denote F t = σ(τi, νi, i = 1, 2, . . . , n(t); n(t)). Using that

E[S(t) − S⋆(t)] = E{E[S(t) − S⋆(t)|Ft]} = 0,

f or the variance we have

Var[S(t) − S⋆(t)] = E[S(t) − S⋆(t)]2

= E{E[S(t) − S⋆(t)]2|Ft}(2.4)

=
1

t2
E





n(t)
∑

i=0

νi
∑

j=1

VarZij(t − τj)



 .
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Set d = suptE (Zij(t) − mij(t))
2. Using Wald’s inequality and the fact that |VarZij(t−

τi)| < d < ∞, as t → ∞, from (2.3) and (2.4) we obtain

Var[S(t) − S⋆(t)] = E[S(t) − S⋆(t)]2

= E

(

E

(

(S(t) − S⋆(t))
2
|Ft

))

=
1

t2
E

n(t)
∑

i=0

νi
∑

j=1

E

(

(Zij(t − τi) − mij(t − τi))
2
|Ft

)

≤
d

t2
E

n(t)
∑

i=0

νi =
d

t2
En(t)Eν1 ≤

2dEν1

tEτ1

for all sufficiently large t, since

n(t)/t
P
→ 1/Eτ1

and

En(t)/t → 1/Eτ1, as t → ∞.

Thus,

I1
P
→ 0, as t → ∞.(2.5)

Now, note only that c = aEν1/Eτ1, where a is defined by (2.2). One has

S⋆(t) − c =
1

t

n(t)
∑

i=0

νi
∑

j=1

mij(t − τi) − c

=
1

t

n(t)
∑

n(t−T )

νi
∑

j=1

mij(t − τi) +
1

t

n(t−T )
∑

i=0

νi
∑

j=1

(mij(t − τi) − a)+

+a





1

t

n(t−T )
∑

i=0

νi −
Eν1

Eτ1



 ≡ I3 + I4 + I5.

Now

0 ≤ I3 ≤
R1

t

n(t)
∑

n(t−T )

νi, a.s.

where R1 = suptmij(t) < ∞.

Let T = o(t) → ∞, t → ∞. Therefore,

P {I3 > ε} ≤
R1

εt
E

n(t)
∑

n(t−T )

νi =
R1

εt
Eν1E (n(t) − n(t − T )) = o(1),(2.6)

as t → ∞.

Denoting

r(T ) = supx≥T |mij(x) − a| ,
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we see that

|I4| ≤
r(T )

t

n(t−T )
∑

i=0

νi

and, therefore, for any fixed ε > 0

P {|I4| > ε} ≤
r(T )

t
E

n(t−T )
∑

i=0

νi =
r(T )Eν1

t
En(t − T ) ≤ R2r(T ) → 0(2.7)

as first t → ∞ and then T → ∞ and R2 = Eν1/Eτ1. Finally, by the law of the large
numbers and the renewal theorem (see Feller (1971), Section XI.6)

1

t

n(t−T )
∑

i=0

νi =
n(t − T )

t

1

n(t − T )

n(t−T )
∑

i=0

νi →
Eν1

Eτ1
a.s.

and, therefore,

I5
P
→ 0(2.8)

as t → ∞. From (2.5)-(2.8) the desired statement follows.
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ВЪРХУ ДОКРИТИЧНИ РАЗКЛОНЯВАЩИ СЕ ПРОЦЕСИ,

ЗАВИСЕЩИ ОТ ВЪЗРАСТТА С ДВА ТИПА ИМИГРАЦИЯ

Марусия Н. Божкова

Разгледани са докритични разклоняващи се процеси на Белман-Харис с два типа

имиграция. Целта на работата е получаване на сходимост по вероятност на про-

цесите само при условие за съществуване на крайни първи и втори факториални

моменти на индивидуалните характеристики на процесите.
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