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USE OF POLYNOMIALS FOR ARITHMETICAL AND

COMBINATORIAL PROBLEMS

Vladimir V. Barzov

Sometimes, Number Theory and Combinatorics problems can be easily translated
into Algebra problems by introducing suitable polynomials. The present note consi-
ders such applications in connection with some problems from various mathematical
competitions and olympiads.

We will use the following notations:
(1) Fp – the field of the remainders modulo p, where p is a prime number;
(2) f ∈ F [x] will mean that f(x) is a polynomial over the field F , i.e. its coefficients are
elements of F .
Often, we will use the following facts:
(1) If the number of the different zeroes of a polynomial is greater than its degree, then
this polynomial is equal to zero identically;
(2) If a polynomail f ∈ F [x] has a zero x0, then f(x) can be represented in the form
f(x) = (x − x0)g(x) for some polynomial g ∈ F [x].

The first problem was given on the Selection Test for the Balkan Mathematical
Olympiad in 2001:

Problem 1. For an arbitrary set S = {a1, a2, . . . , ak} of integers with
1 ≤ a1 < a2 < . . . < ak ≤ 2000 define the set

Φ(S) =

{

{a1 + 1, a2 + 1, . . . , ak + 1}, if ak < 2000;
{1, 2, . . . , 2000}\{a1 + 1, a2 + 1, . . . , ak−1 + 1}, if ak = 2000.

Prove that Φ2001(S) = S, where Φ2001(S) is the 2001-st iteration of Φ.

Solution. Consider the polynomial f(x) = xa1−1 + xa2−1 + . . . + xak−1. Since
ak − 1 ≤ 1999, then deg f ≤ 1999. Denote a(x) = 1 + x + x2 + . . . + x2000, and define
the polynomial sequence f0(x), f1(x), f2(x), . . ., with f0(x) = f(x), and

fi+1(x) =

{

xfi(x) if deg f(x) ≤ 1998;
a(x) − xfi(x) if deg fi(x) = 1999.

It is clear that if Φi(s) = {b1, b2, . . . , bm} for some positive integers b1 < b2 < . . . < bm,
then fi(x) = xb1−1 + xb2−1 + . . . + xbm−1, which shows that the coefficients of fi(x) are
equal to 1, and that the degree of fi(x) is less than 2000. Moreover, we have fi(x) =
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pi(x)a(x) ± xif(x). For i = 2001 we get degree at most f2001(x) = p(x)a(x) + x2001f(x)
or f2001(x) = p(x)a(x) − x2001f(x).
In the first case f2001(x)− f(x) = p(x)a(x)+ (x2001 − 1)f(x) = a(x)(p(x)+ (x− 1)f(x)).
Then, the polynomial f2001(x) − f(x) is of deg ≤ 1999, and it is divisible by a(x), hence
it is identical to 0. Therefore, we have f2001(x) = f(x), which means that Φ2001(S) = S.
Analogously, in the second case we obtain f2001(x) = −f(x), which is a contradiction,
since the coefficients of f(x) and f2001(x) are positive.

Problem 2. Prove that if a0, a1, . . . , an−1 are real numbers with a0+a1+ . . . +an−1=0,

and if the cyclic sum
∑

C

1

ai(ai + ai+1) . . . (ai + ai+1 + . . . + ai+n−2)
is well defined, then

this sum is equal to 0.

Solution. Let si = a0 + a1 + · · · + ai−1 and sk+n = sk for all k ∈ Z. Now we have

to prove that
∑

C

1

(si+1 − si)(si+2 − si) . . . (si+n−1 − si)
= 0.

Denoting sn−1 by x, let us consider the rational function

1

(s0 − x)(s1 − x) . . . (sn−2 − x)
+

=

n−2
∑

i=0

1

(s0 − si)(s1 − si) . . . (si−1 − si)(si+1 − si) . . . (xn−2 − si)(x − si)
.

It can be represented as

A +
n−2
∑

i=0

Ai(x − s0)(x − s1) . . . (x − si−1)(x − si+1) . . . (x − sn−2)

B(x − s0)(x − s1) . . . (x − sn−2)
=

=
Pn(x)

B(x − s0)(x − s1) . . . (x − sn−2)
,

where B =
∏

i6=j

(si − sj), A = (−1)n−1B, Ai =
B

(x − s0)(x − s1) . . . (x − sn−2)
, i =

0, 1, . . . , n − 2, and the degree of the polynomial Pn(x) is not greater than n − 2. Note
that Pn(si) = 0 for i = 0, 1, . . . , n−2; therefore Pn(x) ≡ 0 and in particular Pn(sn−1) = 0,
which completes the proof.

Problem 3. Prove that

n
∑

k=1

(−1)n−k

(

n

k

)(

kn − 1

n − 1

)

= 1 for every positive integer n.

Solution. Let f0(x) =
(xn − 1)(xn − 2) . . . (xn − n + 1)

(n − 1)!
, and consider the sequence

of polynomials f0(x), f1(x), . . . defined by the recurrence fk+1(x) = fk(x) − fk(x + 1).
Since deg f0 = n − 1 and deg fk+1 < deg fk, it follows that fn ≡ 0. Then, from the
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identities fi(x) =

i
∑

k=0

(−1)k

(

i

k

)

f0(x + k) and f0(k) =

(

kn − 1

n − 1

)

we obtain

0 = fn(0) = f0(0) +

n
∑

i=1

(−1)k

(

n

k

)(

kn − 1

n − 1

)

⇒

n
∑

i=1

(−1)k

(

n

k

)(

kn − 1

n − 1

)

= (−1)n.

This completes the proof.

The following problem is original:
Problem 4. Given are p (where p is a prime number greater than 3) integers,

arranged on a circle. On each ”turn” one adds simultaneously the right neighbor to
every number, and subtracts its doubled left neighbor. Prove that after p − 1 turns all
the numbers become congruent modulo p.

Solution. Let the given numbers be a0, a1, . . . , ap−1. Consider a polynomial
f(x) ∈ Z[x] such that:
f(i) ≡ ai (mod p), i = 0, 1, . . . , p − 1, deg f < p. Such a polynomial exists, for example:

f0(x) = (−a0)(x − 1)(x − 2) . . . (x − p + 1) + (−a1)x(x − 2) . . . (x − p + 1) + . . . +

+(−ap−1)x(x − 1) . . . (x − p + 2).

Let us form the sequence fk+1(x) = fk(x)+ fk(x+1)− 2fk(x− 1) for k = 0, 1, . . . , p− 1.
Notice that the set fk(i), i = 0, 1, . . . , p − 1 represents the remainders modulo p of the
given integers after the k-th turn. Also, note that p > deg f0 > deg f1 > . . . > deg fp−1.
Consequently deg fp−1 ≤ 0, which yields that fp−1 is a constant polynomial. Hence the
numbers fp−1(i) for i = 0, 1, . . . , p − 1 are equal, q.e.d.

The next problem is from the final round of the Romanian Mathematical Olympiad
in 2001:

Problem 5. Find all pairs {m, n} of positive integers, such that m divides an −1 for
each a = 1, 2, . . . , n.

Solution. Evidently, the pairs {1, k} and {k, 1} satisfy the requirements for every
natural k. Now, suppose m, n > 1. Let p be an arbitrary prime divisor of m. Since
p|(an − 1) for a = 1, 2, . . . , n, it follows that n < p. Otherwise we would get a contradic-
tion with p/(pn − 1). Then, we have that the polynomial f(x) = xn − 1 ∈ Fp[x] can be
factorized over Fp: xn−1 ≡ (x−1)(x−2) . . . (x−n) (mod p). Comparing the coefficients
of xn−1, we get 0 ≡ 1+2+ . . .+n = n(n+1) (mod p). From here p|(n+1), and therefore
n + 1 = p. This means that m has exactly one prime divisor, and thus m = pα for some
positive integer α. Assuming that α ≥ 2, we have p2/(ap−1 − 1) for a = 1, 2, . . . , p − 1.
On the other hand, from p = n + 1 > 2, we have (p− 1)p−1 − 1 ≡ p(p− 1) 6≡ 0 (modp2).
Thus, α ≤ 1. It is easy to see that the pair {p, p − 1} is a solution for any prime p.
Finally, the answer is: {1, k}, {k, 1}, and {p, p− 1} for every prime p and natural k.
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The following problem is from the Poland Mathematical Olympiad in 1995:

Problem 6. Let p ≥ 3 be a given prime. Define the sequence (an) by an = n for
n = 0, 1, . . . , p − 1, and an = an−1 + an−p for n > p. Determine the remainder of ap3

modulo p.

Solution. Define another sequence (bn) by bn = ap3−n for n = 0, 1, . . . , p3. Obviously,
it satisfies bn = bn−p − bn−p+1 for n ≥ p. We can extend this sequence using this
recurrence by defining (bn)n≥p. Now, if x1, x2, . . . , xp are the zeroes of t(x) = 1−x−xp,
then it is easy to see that xi 6= xj for i 6= j. Hence, there exist unique numbers λi ∈ C, i =
1, 2, . . . , p, such that bn = λ1x

n
1 + λ2x

n
2 + . . . + λpx

n
p . Obviously, if f(x) is a polynomial

and f ∈ Z[x], then

p
∑

i=1

λif(xi) is an integer, as it is a linear combination of some of the

terms of (bn). We will show that bn ≡ bn+p2−1 (mod p) for n ≥ 0. Now we have: T

xp2

≡ (xp)p ≡ (1−x−t(x))p ≡ (1−x)p+t(x)u(x) ≡ 1−xp+t(x)u(x) ≡ x+t(x)(u(x)+1) ≡

x + t(x)v(x) (mod p). Putting x = 0 we obtain 0 ≡ 0p2

− 0 ≡ t(0)v(0) ≡ v(0)(mod p),

since t(0) = 1. Consequently, v(x) ≡ xA(x) (mod p), and t(x)A(x) ≡ xp2−1 − 1 (mod

p). So, there exists a polynomial B(x) ∈ Z[x], such that t(x)A(x) + pB(x) = xp2−1 − 1.
Then, since t(xi) = 0 for i = 1, 2, . . . , p , we have

bn+p2−1 − bn =

p
∑

i=1

λix
n
i (xp2−1

i − 1) =

p
∑

i=1

λix
n
i (pB(xi)) = p

p
∑

i=1

λiC(xi) = pcn,

where cn is an integer according to the observation above.
Finally, ap3 = b0 = bp3−p − p(c0 + c1 + . . . + cp−1) = ap + pC, and the answer is p − 1.

The next problem was used for the preparation of the Bulgarian team for the 41st

IMO in South Korea:

Problem 7. Two different multisets {a1, a2, . . . , an} and {b1, b2, . . . , bn} are diven.
(A multiset is a set with possible repetitions). Prove that if the multisets {ai + aj |1 ≤
i < j ≤ n} and {bi + bj|1 ≤ i < j ≤ n} coincide, then n is a power of 2.

Solution. Consider the polynomials f(x) = xa1+xa2+· · ·+xan and g(x) = xb1+xb2+
. . . + xbn . From the hypothesis we have f(x)f(x) − f(x2) = g(x)g(x) − g(x2). Denoting
h(x) = f(x) − g(x) 6≡ 0, we get h(x)(f(x) + g(x)) = h(x2). If now h(x) = (x − 1)mp(x),
p(1) 6= 0, then p(x)(f(x) + g(x) = (x + 1)mp(x2), and p(1)(f(1) + g(1)) = (1 + 1)mp(1).
Therefore, 2n = f(1) + g(1) = 2m ⇒ n = 2m−1.

The next problem is taken from the American Mathematical Monthly:

Problem 8. Let p be an odd prime. Prove that

p−1
∑

i=1

2iip−2 ≡

p−1

2
∑

i=1

ip−2 (mod p).
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Solution. This congruence, considered as an identity in Fp, can be written in the

form

p−1
∑

i=1

2i

i
=

p−1

2
∑

i=1

1

i
. Indeed, by the Fermat theorem, ip ≡ i (mod p), and hence, if

i ∈ [1; p − 1], ip−2 =
1

i
in Fp. Since

p−1
∑

i=1

1

i
≡

p−1
∑

i=1

i ≡ 0 (mod p), then

p−1
∑

i=1

(−1)i

i
=

p−1

2
∑

i=1

−2

2i − 1
=

p−1

2
∑

i=1

2

p − (2i − 1)
=

p−1

2
∑

i=1

1
p−2i+1

2

=

p−1

2
∑

i=1

1

i
.

Further, we consider the polynomial f(x) =

p−1
∑

i=1

xi

i
, f ∈ Fp[x]. The assertion reduces

to the equality f(2) = f(−1). Actually, a stronger assertion holds true: f

(

x +
1

2

)

=

f

(

−x +
1

2

)

. The hypothesis follows by putting x = 3
2
. Note that f ′(x) = 1 + x + · · ·+

xp−2 =
xp−1 − 1

x − 1
for x 6= 1. Moreover, f ′(0) + f ′(1) = 1 + p − 1 = 0, so the polynomial

f ′

(

x +
1

2

)

+ f ′

(

−x +
1

2

)

has at least p− 1 different zeroes, and is of degree less than

p − 1. Hence, f ′

(

x +
1

2

)

+ f ′

(

−x +
1

2

)

≡ 0, and f

(

x +
1

2

)

= f

(

−x +
1

2

)

, which

completes the proof.

Problem 9. Compute the sum modulo p of all the primitive roots of p, where p is a
prime number.

Solution. Let Sk be the set of all the numbers a ∈ [1; p− 1], such that ak ≡ 1 (mod
p), and al 6≡ 1 (mod p) for l ∈ [1; k − 1]. ( Sk could be empty for some k.) Denote

fk(x) =
∏

a∈Sk

(x − a), fk ∈ Fp[x] for every positive divisor k of p − 1, and let bk be the

coefficient of xdeg fk−1. Note that
∏

k/d

fk(x) ≡ xd − 1 (mod p) for every divisor d of

p − 1. Moreover, the senior coefficients of fk are units, so that
∑

k/d

bk ≡ 0 (mod p) for

d > 1. As it is known,
∑

k/d

µ(k) ≡ 0 (mod p) for d > 1, so an easy induction proves that

bk ≡ −µ(k) (mod p). Therefore, the sum of the roots of fp−1 – the primitive roots – in
Fp is −bp−1 = µ(p − 1), and we are done.

In conclusion, I wish to thank Mr. Sava Grozdev and Mr. Ivan Dimovsky for their
help in the preparation and editing of the paper.
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ПРИЛОЖЕНИЕ НА ПОЛИНОМИ ЗА РЕШАВАНЕ НА

АРИТМЕТИЧНИ И КОМБИНАТОРНИ ЗАДАЧИ

Владимир В. Барзов

Понякога задачи от областа на теорията на числата и комбинаториката могат да

бъдат преведени на алгебричен език чрез въвеждането на подходящи полиноми.

Настоящият доклад разглежда такива приложения във връзка със задачи от

различни математически състезания и олимпиади.
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