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Sometimes, Number Theory and Combinatorics problems can be easily translated
into Algebra problems by introducing suitable polynomials. The present note consi-
ders such applications in connection with some problems from various mathematical
competitions and olympiads.

We will use the following notations:
(1) F,, — the field of the remainders modulo p, where p is a prime number;
(2) f € Flx] will mean that f(z) is a polynomial over the field F, i.e. its coefficients are
elements of F'.
Often, we will use the following facts:
(1) If the number of the different zeroes of a polynomial is greater than its degree, then
this polynomial is equal to zero identically;
(2) If a polynomail f € F[x] has a zero xg, then f(x) can be represented in the form
f(z) = (x — zo)g(x) for some polynomial g € Fx].

The first problem was given on the Selection Test for the Balkan Mathematical
Olympiad in 2001:

Problem 1. For an arbitrary set S = {a1,az,...,ar} of integers with
1<a; <as <...<ar <2000 define the set
B(S) = { {a1 +1,a2+1,...,ax + 1}, if a; < 2000;
{1,2,...,20001\{a1 + 1,az + 1,...,ap_1 + 1}, if aj, = 2000.
Prove that ®2091(S) = S, where ®2°91(S) is the 2001-st iteration of ®.

Solution. Consider the polynomial f(z) = 2%~ + z%2~1 4 . 4+ %=1 Since
ar — 1 <1999, then deg f < 1999. Denote a(z) = 1+ 2 + 22 + ... + 22°° and define
the polynomial sequence fo(x), f1(z), f2(z),..., with fo(z) = f(x), and

_ | afi(z) if deg f(x) < 1998;
firr(z) = a(x) — xfi(z) if deg f;(x) = 1999.

It is clear that if ®%(s) = {by,ba,..., by} for some positive integers by < bg < ... < by,
then fi(x) = 2"~ +ab2=1 + ..+ 2b»~1 which shows that the coefficients of f;(x) are
equal to 1, and that the degree of f;(x) is less than 2000. Moreover, we have f;(z) =
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pi(r)a(z) £ 2% f(z). For i = 2001 we get degree at most faoo1(z) = p(z)a(x) + 22 f(z)
or fao1(z) = p(x)a(x) — 2 f(2).

In the first case fago1(z) — f(x) = p(x)a(z) + (2201 — 1) f(2) = a(z)(p(z) + (x — 1) f ().
Then, the polynomial fago1(x) — f(z) is of deg < 1999, and it is divisible by a(x), hence
it is identical to 0. Therefore, we have fago1(z) = f(z), which means that ®2091(S) = S.
Analogously, in the second case we obtain fap1(2) = —f(z), which is a contradiction,
since the coefficients of f(x) and fa001 () are positive.

Problem 2. Prove that if ag, a1, ..., a,_1 are real numbers with ag+a1+ ... +a,_1=0,
and if the cyclic sum Z
C

is well defined, then
ai(ai + ai+1) e (ai +aiy1+ ...+ ai_;,_n_g)

this sum is equal to 0.

Solution. Let s; = ap +a; + -+ + a;—1 and siy, = s for all k € Z. Now we have

to prove that = 0.
zc: (8i41 — 5i)(Sit2 — 8i) - -+ (Sign—1 — 5i)
Denoting s,,—1 by «, let us consider the rational function

! +
(so—z)(s1 —x)...(Sp—2 — )
o ‘ (S() — Si)(Sl — Si) . (Si,1 — Si)(si+1 — Si) . (In,Q — SZ)(JJ — 52) '

=0

It can be represented as

A+ ég:QAZ—(:E —so)(x—s1)... (@ —si—1)(® — Si41) ... (T — Sp—2)

=0
Bz —sp)(x —$1)...(x — Sp—2)

P, (z)
Bz —s0)(x—s1)...(x — sp_2)’

7 =

B
where B = s;i—sj), A = (=1)""1B, A; = ,
g( 2 (=1 (x —so)(®—51)...(x — sp_2)
0,1,...,n — 2, and the degree of the polynomial P,(x) is not greater than n — 2. Note
that P,(s;) =0fori=0,1,...,n—2; therefore P, (z) = 0 and in particular P, (s,—1) =0,
which completes the proof.

n
kn—1
Problem 3. Prove that ];(—1)"_k (Z) ( :7 1 ) =1 for every positive integer n.
(an—1)(zn—2)...(an —n+1)
(n—1)!
of polynomials fo(x), f1(z),... defined by the recurrence fri1(z) = fr(z) — fu(z + 1).
Since deg fo = n — 1 and deg fr+1 < deg fi, it follows that f, = 0. Then, from the
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Solution. Let fo(x) = , and consider the sequence



identities f;(x) = Z(—l)k (;) fo(z + k) and fo(k) = (k:_ll) we obtain

k=0

n

0= =50+ -0 () () = e () () = o

i=1 i=1

This completes the proof.

The following problem is original:

Problem 4. Given are p (where p is a prime number greater than 3) integers,
arranged on a circle. On each ”turn” one adds simultaneously the right neighbor to
every number, and subtracts its doubled left neighbor. Prove that after p — 1 turns all
the numbers become congruent modulo p.

Solution. Let the given numbers be ag,a1,...,ap—1. Consider a polynomial
f(z) € Z[z] such that:
fl@)=a; (mod p), i=0,1,...,p—1,deg f < p. Such a polynomial exists, for example:

fol@)=(—ag)(z—D)(z=2)...(x —p+ 1)+ (—a)z(x—2)...(x—p+ 1) +...+

+(—ap_1)x(zr—1)...(x —p+2).

Let us form the sequence fi1(x) = fi(z) + fr(z+1) = 2fp(z—1) for k=0,1,...,p— 1.
Notice that the set fi(é),i = 0,1,...,p — 1 represents the remainders modulo p of the
given integers after the k-th turn. Also, note that p > deg fo > deg f1 > ... > deg fp—1.
Consequently deg f,—1 < 0, which yields that f,_; is a constant polynomial. Hence the
numbers fp_1(¢) for ¢ =0,1,...,p — 1 are equal, g.e.d.

The next problem is from the final round of the Romanian Mathematical Olympiad
in 2001:

Problem 5. Find all pairs {m,n} of positive integers, such that m divides a™ — 1 for
eacha=1,2,...,n.

Solution. Evidently, the pairs {1,k} and {k, 1} satisfy the requirements for every
natural k. Now, suppose m,n > 1. Let p be an arbitrary prime divisor of m. Since
p|(a™ —1) for a =1,2,...,n, it follows that n < p. Otherwise we would get a contradic-
tion with p/(p™ — 1). Then, we have that the polynomial f(z) = 2™ — 1 € Fj[z] can be
factorized over Fj,: 2" —1= (z—1)(z—2)...(z—n) (mod p). Comparing the coefficients
of z" 1 weget 0=1+2+...+n=n(n+1) (mod p). From here p|(n+1), and therefore
n+ 1 = p. This means that m has exactly one prime divisor, and thus m = p® for some
positive integer a. Assuming that a > 2, we have p?/(a?~! — 1) for a = 1,2,...,p — 1.
On the other hand, from p =n+1 > 2, we have (p — 1)P~! —1 = p(p — 1) Z 0 (modp?).
Thus, @ < 1. Tt is easy to see that the pair {p,p — 1} is a solution for any prime p.
Finally, the answer is: {1,k}, {k,1}, and {p,p — 1} for every prime p and natural k.
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The following problem is from the Poland Mathematical Olympiad in 1995:

Problem 6. Let p > 3 be a given prime. Define the sequence (a,) by a, = n for

n=0,1,...,p—1, and a, = an_1 + an_p for n > p. Determine the remainder of a,s
modulo p.

Solution. Define another sequence (by,) by b, = a,s_,, forn =0,1,... ,p>. Obviously,
it satisfies b, = byp_p — bp—pr1 for n > p. We can extend this sequence using this
recurrence by defining (b,,)n>p. Now, if 21,29, ..., zp are the zeroes of t(zx) =1 — 2 — 2P,
then it is easy to see that z; # x; for ¢ # j. Hence, there exist unique numbers A; € C,i =
1,2,...,p, such that b, = Az} + Ay + ... + A\pxy. Obviously, if f(z) is a polynomial

P

and f € Z[x], then Z Aif(x;) is an integer, as it is a linear combination of some of the

i=1
terms of (b,). We will show that b, = b,4,2_1 (mod p) for n > 0. Now we have: T
' = (@) = (1—a—t(x))" = (1—2)"+H(z)u(z) = 1- 2P +t(z)u(z) = +t(z)(u(e )+1)*
z + t(z)v(z) (mod p). Putting # = 0 we obtain 0 = 0P" — 0 = £(0)v(0) = (0 (mod p),

2

since ¢(0) = 1. Consequently, v(z) = xA(x) (mod p), and t(x)A(x) = 2P ~! — 1 (mod
p). So, there exists a polynomial B(z) € Z[z], such that ¢(z)A(z) + pB(z) = P =1 — 1.
Then, since t(z;) =0 for i =1,2,...,p , we have
P
brgp2_1 —bn = Z)\Z:cf(zf Z)\ z(pB(x;)) pZ)\ C(z;) = pen,

where ¢,, is an integer according to the observation above.
Finally, ays = bg = bys_p, — p(co +¢1 + ...+ ¢p—1) = a, + pC, and the answer is p — 1.

The next problem was used for the preparation of the Bulgarian team for the 415¢
IMO in South Korea:

Problem 7. Two different multisets {a1,as,...,an} and {b1,ba,...,b,} are diven.
(A multiset is a set with possible repetitions). Prove that if the multisets {a; + a;|1 <
i <j <n}and {b; + ;|1 <i< j<n} coincide, then n is a power of 2.

Solution. Consider the polynomials f(z) = 2%+ +- - -+ and g(z) = 2% +a*2+
...+ a2 From the hypothesis we have f(z)f(z) — f(2?) = g(z)g(z) — g(x?). Denoting
h(z) = f(x) = g(x) # 0, we get h(z)(f(z) + g(x)) = h(z*). If now h(z) = (z — 1)"p(z),
p(1) # 0, then p(x) (F(x) + g(x) = (z + 1)™p(x2), and p(1)(F(1) + (1)) = (1 + 1)7p(1).
Therefore, 2n = f(1) + g(1) = 2™ = n =271,

The next problem is taken from the American Mathematical Monthly:

p—1 et
Problem 8. Let p be an odd prime. Prove that Z 24P—2 = Z "2 (mod p).

=1 =1
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Solution. This congruence, considered as an identity in F},, can be written in the
N
1
f — = —. Indeed, by the F t th , 1P =1 d p), and h , if
orm Z : ZZ ndeed, by the Fermat theorem, @ i (mod p), and hence, i
1 p—1 p—1
€ll;p—1],i?2==1in F,. Si - = =0 d p), th
[1;p—1],1¢ - in By 1nceiZ;Z ;z (mod p), then
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Further, we consider the polynomial f(z) = Z x—,, f € Fplz]. The assertion reduces
i
i=1

1
to the equality f(2) = f(—1). Actually, a stronger assertion holds true: f (ac + 5) =

1
f (—x + 5) The hypothesis follows by putting z = % Note that f/(x)=14+z+---+

p—1 _ 1
P2 = :Ei for © # 1. Moreover, f'(0) + f'(1) =1+ p— 1 =0, so the polynomial
T —

1 1
f! <:c + 5) +f (:c + 5) has at least p — 1 different zeroes, and is of degree less than

p — 1. Hence, f' <x+%> + f <x+%) =0, andf(:nJr%) f(er%),which

completes the proof.

Problem 9. Compute the sum modulo p of all the primitive roots of p, where p is a
prime number.

Solution. Let Sy be the set of all the numbers a € [1;p — 1], such that a* =1 (mod
p), and a' # 1 (mod p) for I € [I;k — 1]. ( Sk could be empty for some k.) Denote
frlz) = H (x — a), f € Fplx] for every positive divisor k of p — 1, and let by be the

a€Sy
coefficient of x9°8/*=1 Note that ka(ac) = 2% — 1 (mod p) for every divisor d of
k/d
p — 1. Moreover, the senior coefficients of f; are units, so that Zbk = 0 (mod p) for
k/d
d > 1. As it is known, Z w(k) =0 (mod p) for d > 1, so an easy induction proves that
k/d
b = —u(k) (mod p). Tlierefore, the sum of the roots of f,—1 — the primitive roots — in
F, is —b,—1 = p(p — 1), and we are done.

In conclusion, I wish to thank Mr. Sava Grozdev and Mr. Ivan Dimovsky for their
help in the preparation and editing of the paper.
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ITPNJIO2KEHUWE HA TIOJIMHOMMUM 3A PEIITABAHE HA
APUTMETNYHU N1 KOMBMHATOPHUN 3AJAYN

Baagumup B. Bap3sos

TTonsikora 3aja4u oT 0b6IaCTa HA TEOPUATA HA YUCIATA U KOMOMHATOPUKATA MOIaT Jia
ObIaT IPEBEIEHN Ha aJreOpUYeH €3UK Upe3 BbBEXKIAaHETO Ha, ITOJAXOIAIIN TIOJTUHOMM.
HacrosimusaT mokma pasriekja TaKuBa MPUJIOXKEHUS BbB BPb3Ka ChC 33Ja49d OT
Pa3IMYHA MATEMATUYIECKN CbCTE3AHNUSA U OJUMIIUAIN.
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