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NUMERICAL COMPARISON BETWEEN

TWO ENZYME-KINETIC MODELS
*

Nadejda Grigorova

Using a guaranteed numerical method we show that two familiar Michaelis-Menten
models used for the same purpose generally produce substantially different solutions.

1. Introduction. The enzyme-substrate metabolic interactions can be effectively
described mathematically by the following system of nonlinear differential equations fur-
ther called Michaelis-Menten system, see e. g. [1, 4, 5]:

ds/dt = −k1es + k−1c
dc/dt = k1es − (k−1 + k2) c
de/dt = −k1es + (k−1 + k2) c
dp/dt = k2c,

(1)

wherein s, e, c, p are concentrations of the substrate, enzyme, complex and product,
resp., and the initial conditions are s(0) = s0, c(0) = 0, e(0) = e0, p(0) = 0.

Typically, the concentration of the enzyme is much smaller than those of the substrate,
e. g. e0/s0 ∈ [10−7, 10−2]. This makes system (1) stiff, i.e. the substrate variable s
changes near 0 much slower than the enzyme e and complex variable c change. Since
p can be found by direct integration, p(t) = k2

∫
t

0
c(t′)dt′, we concentrate on the first

three equations of (1). Adding the second and the third equation of (1), we obtain
dc/dt + de/dt = 0. Using the initial conditions for the complex and the enzyme, the
above equation gives: e + c = e0, resp. e = e0 − c. Thus system (1) reduces to two
equations for s and c, namely:

ds/dt = −k1e0s + (k1s + k−1)c
dc/dt = k1e0s − (k1s + k−1 + k2)c

(2)

with initial conditions: s(0) = s0, c(0) = 0. However, the reduced system (2) cannot be
solved in a closed form, see [5]. On the other hand, another widely used (for the same
purpose) simplified model, further referred to as Michaelis-Menten law, is given by

ds/dt = −Vmaxs/(s + KM ), s(0) = s0,(3)

where KM = (k−1 + k2)/k1 is the Michaelis constant and Vmax = k2e0 is the maximum
velocity.

2. Problem Formulation. Consider the Michaelis-Menten system (2) and the
Michaelis-Menten law (3). Both models produce solutions for the substrate concentration
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s, and, in practice, the solution of (3) is used as an approximation of the solution s of
(2). In both cases one has to use some numerical method to find these solutions, cf. [5],
hence computational errors are introduced. We would like to know, are the solutions of
the two models substantially different taking into account all errors introduced by the
numerical treatment of the corresponding differential equations? In other words, is the
difference between the two solutions of the order of the numerical error involved? To
illustrate the problem, let us consider a particular case study.

Figure 1. The solutions of smms and smml for data (4)

Numerical example. For the numerical solution of the Michaelis-Menten system
and law we use an Euler method and a uniform mesh with step size h = 0.007. The
following values for the parameters and initial data are assumed:

k1 = 5, k−1 = 1, k2 = 4, s0 = 10/3, e0 = 1.(4)

For the data (4) the Michaelis-Menten constant is KM = 1. With these data for the
relative difference:

r = maxt

smml(t) − smms(t)

(smml(t) + smms(t))/2
(5)

we obtain: r ≈ 0.28 = 28%, where smms is the substrate concentration obtained from
the Michaelis-Menten system (2), and smml is the substrate concentration satisfying the
Michaelis-Menten law (3).

Figure 1 presents graphically the numerical solutions smms(t) and smml(t) to the
Michaelis-Menten system (2) and equation (3), resp. As the computed relative difference
(5) between the numerical solutions is corrupted by errors coming from the numerical
method and roundoff errors, the number r gives us little information about the actual
difference between the two solutions. For instance, from Figure 1 we see that smml >
smms, but this may not be true unless we know the computational error.

The use of (3) as an approximation of (2) in more complex systems of enzyme-kinetic
equations, see e. g. [3], may be of considerable interest for the simplification of the
corresponding models. However, this rises again the issue of a guaranteed estimation of
the difference between the original model and the corresponding simplified model. Since
we do not know how to treat this problem analytically, in this work we investigate the
problem numerically (with verification). That is, we solve both problems (2), (3) using a
numerical method with result verification taking into account all possible errors (errors
from input data, truncation errors, roundoff errors).
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In the sequel we shall use a guaranteed interval method, which will allow us to make
a rigorous statement as regard to the comparison of the two solutions discussed above.

3. Numerical Method and Experiments. A simple interval method for the so-
lution of the Michaelis-Menten system and the Michaelis-Menten law, producing bounds
for the solution of the initial value problem for systems of ordinary differential equa-
tion [2] has been implemented in the computer algebra system MATHEMATICA. For
convenience we briefly describe the method for the general IVP of ODE:

ds

dt
= f(s), s(t0) = s0 ∈ [s0, s0].(6)

Assume that s = s(t) is the solution of (6) on an interval T ∈ [t0, t] (the method does not
assume uniqueness of the solution). We shall enclose s in an interval [s, s] on T = [t0, t],
i.e. s(t) ≤ s(t) ≤ s(t) for any solution s of (6) and for any t ∈ T . Let h > 0 be a step,
defining a mesh tk = t0 + kh, k = 0, 1, . . . , k, kh ≤ t.
We set s(t0) = s0, s(t0) = s0. Assuming that s, s are already computed at some tk, i.e.
s(tk) ≤ s(tk) ≤ s(tk) then we compute s, s in the interval Tk = [tk, tk+1] by means of the
following iteration procedure:

a) for the upper bound s we compute for r = 0, 1, 2, . . . , r:

Z
(0)

= [0, s0]

[p(r), q(r)] = {f(s) | s ∈ Z
(r)

}

Z
(r+1)

= s(tk) ∨ (s(tk) + p(r)h) ∨ (s(tk) + q(r)h),

where the notation α ∨ β ∨ γ = [min{α, β, γ}, max{α, β, γ}] has been used. Using the
computed value q(r) we obtain: s(t) = s(tk) + q(r)(t − tk), t ∈ Tk.

b) similarly, for the lower bound s we compute for r = 0, 1, 2, . . . , r:

Z(0) = [0, s0]

[p(r), q(r)] = {f(s) | s ∈ Z(r)}

Z(r+1) = s(tk) ∨ (s(tk) + p(r)h) ∨ (s(tk) + q(r)h),

and subsequently, s(t) = s(tk) + p(r)(t − tk), t ∈ Tk.

Consider equation (3) with initial condition s(t0) = s0, and assume that the initial
value s0 of the substrate is not exact, s0 ∈ [s0, s0]. Using that the right-hand side of the
Michaelis-Menten law, f(s) = −Vmaxs/(s + KM ), is a decreasing function we compute:

[p(r), q(r)] = {f(s) | s ∈ Z
(r)

} = [f(Z
(r)

[2]), f(Z
(r)

[1])],

here and in the sequel Z[1] denotes the left endpoint of the interval Z and Z[2] is the
right endpoint of Z.

Consider the Michaelis-Menten system (2). We seek to enclose the solution s, c of the
system in bounds [(s, c), (s, c)] on T = [t0, t]. We set s(t0) ≤ s0 ≤ s(t0) and c(t0) ≤ c0 ≤
c(t0) . The interval method requires some (rough) initial bounds for the solution; in our
case we have: 0 ≤ s ≤ s0, 0 ≤ c < e0. Assuming that s, c, s, c are already computed for
some tk, i.e. s(tk) ≤ s(tk) ≤ s(tk), c(tk) ≤ c(tk) ≤ c(tk), we compute the values of s, c,
s, c on the next time interval Tk = [tk, tk+1], using the same algorithm as follows:
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Figure 2. Bounds for a) smml b) smms for data (4).

a) for the upper bound s and c we compute for r = 0, 1, 2, . . . , r:

Z
(0)

1 = [0, s0], Z
(0)

2 = [0, e0]

[p
(r)
1 , q

(r)
1 ] = {f1(s, c) | s ∈ Z

(r)

1 , c ∈ Z
(r)

2 }

[p
(r)
2 , q

(r)
2 ] = {f2(s, c) | s ∈ Z

(r)

1 , c ∈ Z
(r)

2 }

Z
(r+1)

1 = s(tk) ∨ (s(tk) + p
(r)
1 h) ∨ (s(tk) + q

(r)
1 h)

Z
(r+1)

2 = c(tk) ∨ (c(tk) + p
(r)
2 h) ∨ (c(tk) + q

(r)
2 h)

s(t) = s(tk) + q
(r)
1 (t − tk), t ∈ Tk

c(t) = c(tk) + q
(r)
2 (t − tk), t ∈ Tk;

b) for the lower bounds s and we compute for r = 0, 1, 2, . . . , r:

Z
(0)
1 = [0, s0], Z

(0)
2 = [0, e0]

[p(r)
1

, q(r)
1

] = {f1(s, c) | s ∈ Z
(r)
1 , c ∈ Z

(r)
2 }

[p
(r)
2 , q

(r)
2 ] = {f2(s, c) | s ∈ Z

(r)
1 , c ∈ Z

(r)
2 }

Z
(r+1)
1 = s(tk) ∨ (s(tk) + p(r)

1
h) ∨ (s(tk) + q(r)

1
h)

Z
(r+1)
2 = c(tk) ∨ (c(tk) + p(r)

2
h) ∨ (c(tk) + q(r)

2
h)

s(t) = s(tk) + p(r)
1

(t − tk), t ∈ Tk

c(t) = c(tk) + p(r)
2

(t − tk), t ∈ Tk.

The function f1(s, c) = −k1e0s + (k1s + k−1)c is a decreasing function of s (for c ≤ e0,
which is always satisfied) and increasing function of c. For the function f2(s, c) = k1e0s−
(k1s + k−1 + k2)c we have the opposite, it is a increasing function of s (since c ≤ e0) and

decreasing function of c, therefore we calculate the corresponding intervals [p
(r)
i

, q
(r)
i

] as
follows:

[p
(r)
1 , q

(r)
1 ] = [f1(Z

(r)

1 [2], Z
(r)

2 [1]), f1(Z
(r)

1 [1], Z
(r)

2 [2])],

[p(r)
1

, q(r)
1

] = [f1(Z
(r)
1 [2], Z

(r)
2 [1]), f1(Z

(r)
1 [1], Z

(r)
2 [2])],

[p
(r)
2 , q

(r)
2 ] = [f2(Z

(r)

1 [1], Z
(r)

2 [2]), f2(Z
(r)

1 [2], Z
(r)

2 [1])],

[p(r)
2

, q(r)
2

] = [f2(Z
(r)
1 [1], Z

(r)
2 [2]), f2(Z

(r)
1 [2], Z

(r)
2 [1])].
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Figure 3. Comparison of the solutions smml and smms.

Figure 2a) presents the numerical solution of the Michaelis-Menten law using the
above interval method for the data for the data (4); thereby the initial condition is taken
to be s0 ∈ [3.3, 3.4]. The exact solution lies between the two curves on Figure 2a).

Figure 2b) presents graphically the numerical solution of the Michaelis-Menten system
for k1 = 5, k−1 = 1, k2 = 4, s0 = 10/3, e0 = 1; the following parameters of the interval
method are used: step size h = 0.007, number of corrections r = 5. The (true) solutions
of the Michaelis-Menten system are enclosed between the computed solutions s(t) ≤
s(t) ≤ s(t), c(t) ≤ c(t) ≤ c(t), t ∈ Tk, only the pair (s, s) is presented on the figures.

Figure 3 presents graphically the numerical solutions smms and smml of the Michaelis-
Menten system, resp. law. Both solutions are computed using the interval method
(however, the bounds for smml are too narrow to be seen on the figure). Clearly, the two
solutions are substantially distinct from each other. For these examples the same values
for the parameters as on Figure 2 are used.

Conclusion. An interval method for the guaranteed solution of the IVP for ODE
has been implemented in MATHEMATICA. The method has been used to compare
numerically the solutions of the Michaelis-Menten system (2) and the Michaelis-Menten
law (3) often used as an approximation of (1). Our numerical experiments have shown
that the two solutions are substantially distinct to each other. Our algorithm allows us
to observe how the difference between the two solutions varies with changes in the input
parameters. Thus it has been observed, that when KM is small the difference between the
two solutions is big, and when KM increases the difference decreases. As in practice KM

is small, we should be careful when using the solution of the Michaelis-Menten law (3) as
an approximation of the system (2). A quantitative measure for the relative difference
between the two solution is given by the variable (5).
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ЧИСЛЕНО СРАВНЯВАНЕ НА ДВА МОДЕЛА ОТ ЕНЗИМНА

КИНЕТИКА

Надежда Григорова

С помощта на гарантиран числен метод е показано, че два известни модела на

Михаелис-Ментен, използвани за едни и същи цели, дават различни решения.
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