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NUMERICAL INTEGRATION WITH ERROR CONTROL
*

Neli Dimitrova

Proposed are two interval methods for numerical integration of a sufficiently smooth
function over a given finite interval. By means of sequential step halving both methods
produce infinite inclusion antitone sequences of intervals, which limits fall in the exact
value of the integral. The iteration methods are realized in the computer algebra
system Maple V Release 4. Numerical experiments are reported, demonstrating the
finite convergence principle as a natural termination criterion of iteration processes
in an environment for scientific computations.

1. Introduction. Let f be an integrable function on the interval [a, b]. Numerical
integration consists in the presentation

I ≡

∫ b

a

f(x)dx =

m
∑

i=1

Aif(xi) + R(f).

Usually the error term R(f) is dropped and
∑m

i=1 Aif(xi) is taken as an approximation
of the integral, I ≈

∑m

i=1 Aif(xi). In Newton–Cotes closed quadrature formulae, which
are considered in the following, the nodes are equally spaced,

a = x0 < x1 < · · · < xm = b, xi = x0 + ih, h =
b − a

m
;(1)

the Ai’s are chosen so that the truncation error R(f) = 0 when f(x) is a polynomial of
highest possible degree.

One important question in numerical integration methods is the choice of the step
size h. An usual approach is the following: first one integrates f using the nodes (1) and
computes an approximation value, say Im, for I; then a new mesh is constructed by step
halving, h/2, and a new approximation, say I2m, is obtained. Continuing this process
one gets an infinite sequence of approximations to I: Im, I2m, I4m, . . .. The question now
is when to stop with subdivision of the integration interval, that is what is the optimal
step size, where the round-off error and the truncation error are minimal.

One approach is the development of adaptive integration rules with good termina-
tion criteria [3]. Another approach, proposed in [2], is based on the discrete stochastic
arithmetic, which is implemented in the CADNA library and allows to estimate the num-
ber of exact significant digits of the computed result using the concept of the computed
zero @.0. A third approach consists in constructing algorithms with result verification
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to obtain guaranteed bounds (intervals) for the exact value I of the integral. An idea
for such an algorithm is given in [4]: first an interval enclosing the error term R(f) is
computed; if it is large, the step size is reduced and an enclosure for R(f) is computed
again. This process is repeated until the error interval becomes small enough; then an
interval for the integral is computed using the last step width. As we shall see in the
following, this approach can cause too many useless iterations without producing an op-
timal result. In [1], an user prescribed tolerance for the width of the enclosing interval
serves as a stopping criterion. But it can happen (and this is demonstrated by many
examples in [1]) that the desired accuracy can not be achieved, which leads to program
termination with an error message without displaying any result.

In this paper we propose two procedures based on known sequential integration rules
– the trapezoidal and the Simpson’s rules – for enclosing the exact value I of the integral.
Both procedures generate infinite inclusion antitone sequences of intervals, which limits
contain I. In the computer realization of these procedures a natural stopping criterion
is used, the finite convergence principle [6].

The paper is organized as follows. In Section 2 we present the traditional sequential
trapezoidal and Simpson’s rules for approximate computation of the integral. In Section
3 the corresponding verification algorithms are proposed. Section 4 reports on some
numerical results using the computer algebra system Maple V Release 4.

2. Sequential Integration Rules.
2.1. The sequential trapezoidal rule. Assume that f, f ′, f ′′ are continuous on [a, b].

Let [a, b] be divided into m subintervals using the nodes (1). The trapezoidal rule for
approximate computation of I with step size h (see [5]) is

T (f ; h) =
h

2

(

f(x0) + 2
m−1
∑

i=1

f(xi) + f(xm)

)

.

There exist points ξi ∈ [xi−1, xi], i = 1, 2, . . . , n, so that the truncation error has the
form

RT (f ; h) = −
h3

12

m
∑

i=1

f ′′(ξi).

Therefore, I = T (f ; h) + RT (f ; h) holds true.
For any integer n ≥ 1 let the interval [a, b] be divided into 2n = 2m subintervals of

equal width h = (b − a)/2n. The trapezoidal rules T (f ; h) and T (f ; 2h) for step sizes h

and 2h respectively obey the relation T (f ; h) =
1

2
T (f ; 2h) + h

m
∑

i=1

f(x2i−1). Denote

T (0) =
h

2
(f(a) + f(b)); T (n− 1) = T (f ; 2h), T (n) = T (f ; h), n ≥ 1.

The sequential trapezoidal rule is then defined by

T (n) =
1

2
T (n− 1) + h

m
∑

i=1

f(x2i−1), n = 1, 2, . . .
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2.2. Sequential Simpson’s Rule. Let f possesses continuous derivative f (4)(x) on the
interval [a, b]. Divide [a, b] into 2m, m ≥ 1, subintervals using the nodes

a = x0 < x1 < . . . < x2m = b, xi = x0 + ih, h =
b − a

2m
.(2)

Simpson’s rule (Simpson’s “one-third” rule) is presented by the formula [5]

S(f ; h) =
h

3

m
∑

i=1

(f(x2i−2) + 4f(x2i−1) + f(x2i)) .

The truncation error is

RS(f ; h) = −
h5

90

m
∑

i=1

f (4)(ξi) for some ξi ∈ [x2(i−1), x2i];

thus I = S(f ; h) + RS(f ; h) is valid.
For any integer n ≥ 1 let [a, b] be divided into 2n = 2m subintervals of equal

width h = (b − a)/2n. Assume that the sequential trapezoidal rule is used to obtain
T (0), T (1), . . . T (n); then Simpson’s rule S(n) = S(f ; h) for 2n subintervals is defined
by the formula

S(n) =
1

3
(4T (n)− T (n − 1)) , n = 1, 2, . . . .

3. Verified Quadrature Formulae. In the traditional numerical analysis the error
terms in the quadrature formulae are omitted and an approximation value for the integral
is delivered. Here we propose quadrature formulae based on the sequential trapezoidal
and Simpson’s rules, taking into account the truncation error. This allows to compute
guaranteed bounds for the exact value of the integral.

3.1. Interval Sequential Trapezoidal Rule. Assume that f satisfies the conditions from
section 2.1. Let the interval [a, b] be divided in subintervals using the nodes (1). For any
interval [x] ⊆ [a, b] denote by F ([x]) and F ′′([x]) inclusion isotone interval extensions of
f and f ′′ respectively [7]. Define

[T ](f ; h) =
h

2

(

F ([x0, x0]) + 2

m−1
∑

i=1

F ([xi, xi]) + F ([xm, xm])

)

,

[RT ](f ; h) = −
1

12
h3

m
∑

i=1

F ′′([xi−1, xi]).

All operations in the above expressions are meant as interval arithmetic ones.

Using the notation [T ](0) =
1

2
h(F ([a, a])+F ([b, b])), [T ](n−1) = [T ](f ; 2h), [T ](n) =

[T ](f ; h) and [RT ](n) = [RT ](f ; h) we obtain

[T ](n) =
1

2
[T ](n− 1) + h

m
∑

i=1

F ([x2i−1, x2i−1]), n = 1, 2, . . . .

The formula

[IT ](n) = [T ](n) + [RT ](n), n = 1, 2, . . .(3)

is called interval sequential trapezoidal rule.
3.2. Interval sequential Simpson’s rule. Let f satisfies the assumptions from section

2.2. Let [a, b] be divided in subintervals using the nodes (2). For any interval [x] ⊆
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[a, b] denote by F ([x]) and F (4)([x]) inclusion isotone interval extensions of f and f (4)

respectively [7]. Define further

[S](f ; h) =
h

3

m
∑

i=1

(F ([x2i−2, x2i−2]) + 4F ([x2i−1, x2i−1]) + F ([x2i, x2i])) ,

[RS ](f ; h) = −
h5

90

m
∑

i=1

F (4)([x2(i−1), x2i]).

Denote [S](n) = [S](f ; h), [RS ](n) = [RS ](f ; h); then

[S](n) =
1

3
(4[T ](n)− [T ](n − 1)) .

The interval sequential Simpson’s rule is presented by the formula

[IS](n) = [S](n) + [RS ](n), n = 1, 2, . . . .(4)

Proposition.Formulae (3) and (4) produce infinite sequences of intervals with the

following properties:

(a) [IT ](1) ⊇ [IT ](2) ⊇ [IT ](3) ⊇ . . ., [IS](1) ⊇ [IS](2) ⊇ [IS](3) ⊇ . . .;
(b) I ∈ [IT ](n) and I ∈ [IS](n) for n = 1, 2, . . .;
(c) If for any interval [x] ⊆ [a, b], F ′′([x]) and F (4)([x]) are Lipschitzian with constants

L1, L2 > 0, which do not depend on [x], then limn→∞[IT ](n) = I, limn→∞[IS](n) = I
hold true.

Proof. (a) and (b) follow from the inclusion isotonicity of the interval extensions F ,
F ′′ and F (4) as well as of the interval arithmetic operations [6]–[7].

(c) Inclusion antitone interval sequences are always convergent (see [6]) and

lim
n→∞

[IT ](n) =
∞
⋂

n=1

[IT ](n), I ∈
∞
⋂

n=1

[IT ](n).

The width ω([RT ](n)) of the error term satisfies the inequality

ω([RT ](n)) ≤
1

12
L(b − a)4

1

23n+1
,

thus limn→∞ ω([RT ](n)) = 0 and therefore limn→∞[IT ](n) = I is valid. The convergence
of the sequence {[IS](n)}∞n=1 to I can be shown in similar way.

4. Numerical Examples. For any iterative interval method, which produces an
inclusion antitone sequence of intervals {[I](n)}, whose end points are represented by
mashine (finite precision) numbers, there is a natural stopping criterion: the sequence
converges in finite number of steps, i. e. there exists an index l, such that [I](1) ⊇
[I](2) ⊇ · · · ⊇ [I](l), but [I](l) ⊆ [I](l + 1). The latter inclusion means that further
iterations are useless; [I](l) is displayed as final result.

The interval sequential integration rules (3) and (4) are implemented in the computer
algebra system Maple V Release 4. Thereby the INTPAK package is used for rounded
interval arithmetic and interval function evaluations.

Example [2]. I =

∫ 1

−1

20 cos(20 x) (2.7 x2 − 3.3 x + 1.2)dx
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• Interval sequential trapezoidal rule

n [IT ](n) ω([RT ](n))
1 [−10686.16967, 10797.83047] —
2 [−2031.549996, 2024.450032] 0.41 × 104

3 [−436.4998695, 407.7286221] 0.85 × 103

4 [−58.45268987, 72.98863358] 0.13 × 103

5 [−2.202115428, 16.30683464] 0.19 × 102

6 [6.119049106, 8.498941338] 0.24 × 101

7 [7.167301653, 7.465154589] 0.29 × 100

...
...

...
12 [7.316680128, 7.316695437] 0.91 × 10−5

13 [7.316676502, 7.316699055] 0.11 × 10−6

The numerical outputs in the above table satisfy the relations

[IT ](1) ⊃ [IT ](2) ⊃ · · · ⊃ [IT ](12), but [IT ](12) ⊂ [IT ](13).

This effect is called finite convergence of sequences in computer (rounded) arithmetic.
The interval [IT ](12) is taken as final result, enclosing the exact value for the integral;
this is the optimal interval with respect to the mashine precision (10 decimal digits in
the mantissa). The optimal step size is h = 1/211. One can see that the widths of the
error intervals ω([IT ](n)) in the last column of the table continue to decrease.

• Interval sequential Simpson’s rule

The next table presents the numerical outputs with 15 decimal digits in the mantissa
(which corresponds to double precision):

n [IS](n) ω([RS ](n))
1 [−314930.836265861, 315042.497067503] —
2 [−19710.0101095144, 19663.3232238210] 0.39 × 105

3 [−961.253512599698, 914.163154067078] 0.19 × 104

4 [−38.8523436021158, 59.3105184338265] 0.98 × 102

5 [5.38149054805527, 9.26091255612297] 0.39 × 101

6 [7.25054709104315, 7.38620412384172] 0.14 × 100

...
...

...
12 [7.31668774717207, 7.31668774739923] 0.13 × 10−9

13 [7.31668774713102, 7.31668774744147] 0.40 × 10−11

Since [IS](1) ⊃ [IS](2) ⊃ · · · ⊃ [IS](12) and [IS](12) ⊂ [IS](13) hold true, the interval
[IS](12) is displayed as final result although the error terms continue to decrease. The
optimal step size is h = 1/211.

For the same example in [2] the CADNA software produces a test for the correctness
of the numerical approximation to I, providing 12 significant digits in the output: I ≈
7.3166877472851; the latter is enclosed by [IS](12).
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ЧИСЛЕНО ИНТЕГРИРАНЕ С КОНТРОЛ НА ГРЕШКАТА

Нели Димитрова

Предложени са два интервални метода за числено пресмятане на определен ин-

теграл от достатъчно гладка функция. Чрез последователно разполовяване на

стъпката на интегриране двата метода произвеждат безкрайни, антитонни по

включване редици от интервали, чиито граници съвпадат с точната стойност

на интеграла. Методите са реализирани програмно в системата за компютърна

алгебра Maple V Release 4. Дадени са резултати от числени експерименти, ко-

ито демонстрират принципа на крайната сходимост като естествен критерий за

спиране на итерационен процес, реализиран в програмна среда за научни изчис-

ления.

343


