MATEMATUKA U MATEMATUYHECKO OBEPA3OBAHUWE, 2002
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002
Proceedings of Thirty First Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 3-6, 2002

ADVANCED SOFTWARE TOOLS FOR VALIDATED
COMPUTING

Walter Kramer

Validated computing based on interval computations is one essential technology
to achieve increased software reliability. In this paper several advanced inter-
val software tools with emphasis on validated computing are considered. Pros
and cons are given and by sample codes the usage of the tools is illustrated
(for your convenience the full codes will be made available on our web pages
http://www.math.uni-wuppertal.de/wrswt/).

The tools INTLAB, Sun’s Forte C++ compilers with interval support, filib++, and
C-XSC are discussed in some detail. Due to limited space, many other interval tools
for more or less special applications are not considered here. You can find pointers to
such tools on the web (e. g. http:www.cs.utep.edu/interval-comp/intsoft.html).

1. Introduction. The program committee organizing Validated Computing 2002
wrote

Ever increasing reliance on computer systems brings ever increasing need for
reliability. Validated computing is one essential technology to achieve in-
creased software reliability. Validated computing uses controlled rounding of
computer arithmetic to guarantee that hypotheses of suitable mathematical
theorems are (or are not) satisfied. Mathematical rigor in the computer arith-
metic, in algorithm design, and in program execution allow us to guarantee
that the stated problem has (or does not have) a solution in an enclosing
interval we compute. If the enclosure is narrow, we are certain that we know
the answer reliably and accurately. If the enclosing interval is wide, we have
a clear warning that our uncertainty is large, and a closer study is demanded.

Intervals capture uncertainty in modeling and problem formulation, in model
parameter estimation, in algorithm truncation, in operation round off, and in
model interpretation.

In this paper we discuss pros and cons for several advanced interval software tools with
emphasis on validated computing. Our sample codes for simple but powerful applications
illustrate the usage of the tools INTLAB [11, 12], Sun’s Forte C++ compilers with interval
support [14, 15, 16], filib++ [8, 9], and C-XSC [3, 5]. Other interval tools for more or less
special applications (see e. g. http://www.cs.utep.edu/interval-comp/intsoft.html)
are not considered here. Those who are interested in recent developments in the field of
Validated Computing may consult [6, 7] and the literature cited therein.

344

2. The INTerval LABoratory INTLAB. INTLAB [11, 12] is a well designed
interval toolbox for the interactive programming environment MATLAB [10]. It allows
the more traditional infimum-supremum as well as the midpoint-radius representations
of intervals. Operators for mixed operands are available:

intvalinit(’DisplayInfsup’); % use inf-sup notation for output
midrad(2,1) + infsup(3,4) % operands may also be vectors or matrices

produces the output [4.000, 7.000].

The midpoint-radius interval arithmetic of INTLAB is entirely based on BLAS. Ma-
trix and vector operations avoid in a clever way case distinctions and the time consuming
switching of rounding mode in inner loops at the expense of some additional BLAS op-
erations. So, in particular, INTLAB matrix operations are very fast. In contrast to
traditional infimum-supremum arithmetic the midpoint-radius implementation takes full
advantage of the speed of vector and parallel architectures. The (theoretical) overes-
timation of midpoint-radius arithmetic compared to infimum-supremum arithmetic is
globally limited by a factor 1.5 for the basic arithmetic operations as well as for vector
and matrix operations (independent of the dimension of the matrices) over IR and €
[12]. In practical machine computations the factor is around 1.0, and sometimes even
less than 1 (due to finite precision machine arithmetic).

Every computation using INTLAB is rigorously verified to be correct, including input
and output. Portability is assured by implementing all algorithms in MATLAB itself
with exception of exactly three routines for switching the rounding downwards, upwards
and to nearest (the routines for switching the rounding mode are freely available for
many platforms on the web). INTLAB itself may be freely copied from the home page
http://www.ti3.tu-harburg.de/ rump/intlab. But to be able to use INTLAB you
have to buy the commercial product MATLAB [10] (see http://www.mathworks.com).

INTLAB allows to write verification algorithms in a way which is very near to pseudo-
code used in scientific publications. E. g., the following INTLAB code may be used to
solve a dense system of linear equations with automatic result verification (the code is
taken from the file verifylss.m coming with INTLAB).

function X = denselss(A,b) 7 linear system solver for dense matrices

midA = mid(A); % midpoint matrix

midb = mid(b);

R = inv(midA) ; % preconditioner: approximate inverse
xs = R * midb ; % approximate solution

% interval iteration

A = intval(A);
Z =R x (b - A*xs) ;
RA = RxA;
C = eye(dim(A)) - RA; % eye produces an identity matrix
Y = Z;
E = 0.1*rad(Y)*hull(-1,1) + midrad(0,10*realmin); 7 prepare inflation
k = 0; kmax = 7; ready = O;
while (“ready) & (k<kmax) & (~any(isnan(Y(:))))
k = k+1;
X =Y+ E; % inflation

345

Y =2 +C*X;
ready = all(all(inO(Y,X))); % check proper inclusion

end

if ready
X =xs +Y; % verified result

else % no succss
disp(’*** In routine denselss: No verification!’)
X = NaN;

end

Let this code be stored in a Matlab M-File denselss.m. Then we can call this routine
to compute a verified enclosure of the solution of a linear system:

intvalinit(’DisplayInfsup’); % use inf/sup output
===> Default display of intervals by infimum/supremum (e.g. [3.14 , 3.15 1)

A = random(3); % generate a 3 by 3 point matrix
A = hull(1-1e-3, 1+1le-3)*A % intervalmatrix
intval A =
L 0.2543, 0.2549] [-0.1730, -0.1725] [-0.2571, -0.2565]
[0.3977, 0.3986] [0.3101, 0.3108] [-0.1497, -0.1493]
[-0.2059, -0.2054] [0.6744, 0.6759] [0.1891, 0.1896]
b = ones(3,1) % right hand side
b =
1
1
1
solution = denselss(A,b) % solve the linear system
intval solution =
[-3.4063, -3.3193]
[3.0485, 3.0745]
[-9.3545, -9.2224]
all(in(b, A*solution)) % check b element of Axsolution
ans = 1

Note, the code for denselss () works for real point and real interval matrices as well as
for complex point and complex interval matrices.

INTLAB offers predefined problem solving routines for dense and sparse systems
of linear and nonlinear equations and eigenvalue problems (verifylss, verifynlss,
verifyeig). A multi precision interval arithmetic, a slope arithmetic as well as rou-
tines for automatic differentiation are also included. The main features of INTLAB
can be nicely explored using several demo files (demointval*, demolong”, demoslope”,
demogradient”).

INTLAB is a very powerful interactive tool to implement prototypes of verification
algorithms. INTL AB code is elegant, easy to read and to maintain. For those who are
interested in guaranteed numerical results and have available MATLAB the INTLAB
package is a must.

3. Sun’s Forte C++ compilers with interval support. In this section fea-
tures of the interval library provided with the actual Sun Forte C++ compilers a re
discussed. First of all, the Sun Forte Compilers are commercial program products. So,
in contrast to all other interval tools discussed in this paper you have to buy it. The

*Using the current version MATLAB 6 Release 12 you have to modify the corresponding M-file:
continue is a key word and can no longer be used as a name for a variable, so you have to rename this
variable

346

goal of Sun’s interval support in C++ is to stimulate development of commercial interval
solver libraries and applications by providing program developers with quality interval
code, narrow-width interval results, rapidly executing interval code and an easy-to-use
software development environment [14].

The following interval extensions are included:

e interval template specializations for intervals using float, double, and long
double scalar data types (with full support and tuned for speed only for data type
double).

e extended interval arithmetic operations and mathematical functions that form a
closed mathematical system: For any possible operator-operand combination, in-
cluding division by zero and other indeterminate forms involving zero and infinities
valid interval results are produced. (The empty set is also an interval.)

e Three types (certainly, possibly and set) of interval relational functions like. The
certainly relational functions are true if the underlying relation (e. g. less than) is
true for every element of the operand intervals. The possibly relational functions
are true if any element of the operand intervals satisfy the underlying relation and
the set relational functions are true if the interval operands satisfy the underlying
relation in the ordinary set theoretic sense (e. g. any interval is set-equal to itself,
including the empty interval).

e interval-specific functions like inf, sup, mid (midpoint), isempty, intersect,
disjoint, in, ...

e input and output of intervals also in a special single-number form (the last displayed
digit is used to determine the interval’s width).

The most exciting feature of Sun’s interval support is the possibility of exception free
interval computations (containment computations) [15, 16]. Using so called containment
sets (set of values that a function can produce when evaluated on the boundary of, or
outside its domain of definition in the common mathematical sense must be incorporated)
allows valid results (including the empty set and intervals with infinities as bounds),
no matter what the value of a function’s arguments or an operator’s operands. More
precisely, the containment set of a function f with respect to an (extended) interval
argument X C IRU {—oo} U {oo} =: IR® is the closure of the range including all limits
and accumulation points, i. e. the set
{f@)ze XNDsru{ lim f(zg)z" € X} CR"
Dy>xp—x*

If the argument lies strictly outside the natural domain Dy of the function, the result
is the empty set (empty interval). Some examples of containment computations are
log[—1,1] = [-00,0], v/[-1,1] = [0,1], log[—2, —1] = 0, coth[—1, 1] = IR*. The following

sample program performs some containment computations:

//To compile and link: CC -xia <progname>
#include <iostream>
#include <suninterval.h> //header file for intervals

//8implify instantiation of intervals

347

typedef SUNW_interval::interval<float> interval;

using std::cout;
using std::endl;

int main()

{
interval x("[-1.5, 3]1");
cout << "x= " << x << endl;
cout << "cos(x)= " << cos(x) << endl;
cout << "log(x)= " << log(x) << endl;
cout << "atan(log(x))= " << atan(log(x)) << endl;
cout << "log([-2,-1])= " << log(interval(-2,-1)) << endl;
cout << "[1]/[0]= " << interval(l)/interval(0) << endl;
return O;
}

The generated output is:

x= [-.15000000E+001 ,0.30000000E+001]
cos(x)= [-.98999250E+000,0.10000000E+001]
log(x)= [-Infinity,0.10986124E+001]
atan(log(x))= [-.15707964E+001,0.83235294E+000]
log([-2,-1])= [EMPTY]
[11/[0]= [-Infinity, Infinity]

As a more powerful application we consider the problem of root finding. The interval
Newton Method in combination with a bisection process is used to compute enclosures
of all roots of a univariate continuously differentiable real valued function.

// Interval Newton method using bisection to avoid division by Intervals
// containing zero in the Interval Newton operator.

// Containment computations are performed so no exceptions are raised

// even for interval arguments (partially) outside the natural domain

// of functions and operators.

#include <suninterval.h>
#include <values.h>
#include <iostream>

using std::cout;
using std::endl;

using namespace SUNW_interval;

// Simplify instantiation of intervals with bounds of type double
typedef interval<double> I;

// Internal representation of +00, maybe there is a header file
double Infinity()
{
return sup(I(1)/I(0));
}

// Data type for univariate interval functions
typedef I (*function) (const I&);

void inewton(function f, function df, const I& x)

{
348

static double maxWidth(le-5);
if (!'in(0.0, £(x))) return; // Definitely no root
double midx(mid(x));

if (midx == -Infinity()) // midx == -007

¢ midx= -MAXDOUBLE;

lee if (midx == Infinity()) // midx == +007

¢ midx= MAXDOUBLE; // Set midx to largest finite number
i fmidx (£ (I(midx))), dfx(df(x));

if (in(0.0, dfx) // Avoid O in denominator interval

&& wid(x) > maxWidth) // Splitting only if x is still too wide

{ // Split interval

inewton(f, df, I(x.inf(), midx)); // Left part

inewton(f, df, I(midx, x.sup())); // Right part

return;
}
I xNew;
xNew= intersect(I(midx) - fmidx/dfx, x); // Interval Newton operator
if (xNew==I("[emptyl")) return; // Definitely no root

if (in_interior (xNew, x)) // Verification ok, one simple root
{
cout << "#xx Verified " << xNew << endl;
return;
}
if (xNew==x) // No further improvement
{
cout << "Possibly containing a zero: " << xNew << endl;
return;
}

else // One bound improved, try further improvement to get validation
inewton(f, df, xNew);

}
I pol(const I& x) // Function pol
{
return (x-I(1))*(x+I(2))*(x-I(3)); // I() interval constructor
}
int main()
{
I searchRange("[-inf, inf]"); // Entire real line!
cout << "All roots of (x-1)*(x+2)*(x-3) in the range \n"
<< " " << searchRange << ":" << endl;
inewton(pol, dpol, searchRange); // Interval Newton with bisection
return O;
}

Running the program produces the following output:

All roots of (x-1)*(x+2)*(x-3) in the range

[-Infinity, Infinity]:
**x Verified [-.2000000000000000E+001,-.2000000000000000E+001]
*xx Verified [0.1000000000000000E+001,0.1000000000000000E+001]
**x Verified [0.3000000000000000E+001,0.3000000000000000E+001]

349

Note, that the complete (unbounded) real line is searched for zeros.

Of course, the program may be improved considerably. Some hints can be found in
[9]. But already this simple version allows to attack functions with singularities (e. g.
14sin(1/x)) and functions with restricted natural domains (e. g. sqrt(1/(z — 4)). No
exceptions are raised and no roots (whether simple or multiple) are lost. Containment
computations are a powerful tool avoiding special programming efforts of various case
distinctions.

Up to now no so called interval problem solving routines are available. For example,
there are no automatic differentiation package, no linear and nonlinear system solvers,
and no library with vector/matrix data types and operations. Also typical functions like
isempty, ispoint, succ, ... and predefined constants are missing.

4. The Interval Library filib+4. filib++ is an extension of the interval library
£ilib originally developed in Karlsruhe [2]. The most important aim of the latter was
the fast computation of guaranteed bounds for interval versions of a comprehensive set
of elementary function. filib++ extends this library in two aspects. First, it adds a
second mode, the extended mode, that extends the exception-free computation mode
using special values to represent infinities and Not-a-Number known from the IEEE
floating-point standard 754 to intervals. In this mode containment sets are computed to
enclose the topological closure of a range of a function defined over an interval [15, 16].
Second, the new state of the art design uses templates and traits classes in order to get
an efficient, easily extendable and portable library, fully according to the C++ standard
[4].

In contrast to Sun’s C++ compilers with interval support £ilib++ is freely available.
Completely coded in C++ and fully according to the C++ standard the library can be
used with many compilers on a large variety of computer platforms.

The following program computes enclosures for level curves of two dimensional func-
tions. £ilib++ in combination with the standard template library is used. The numerical
output i s stored in a file called 1level. After completion of the program this file contains
data in such a way that gnuplot can display with confidence a graph of the desired level
curve using the command plot "level" with lines.

#include <fstream>

#include <list>
#include <interval/interval.hpp>

using std::cout;
using std::endl;
using std::1list;
using std::pair;
using std::make_pair;

//8implify instantiation of intervals
typedef filib::interval<double> I;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<I::value_type> traits;

pair<I,I> bisect(I x)
{

//...
}

350

void levelCurve(I(*f)(I,I), I x, I y, double level, double epsilon)
{
//Store boxes containing points of level curve in file "level"
std::ofstream out("level");
typedef pair<I,I> rectangle;
list<rectangle> toDo, done;
toDo.push_back(make_pair(x,y));
while(!toDo.empty())
{
rectangle box= toDo.front();
toDo.pop_front () ;
I fRange= f(box.first, box.second);
if (in(level, fRange)) //Box may contain points of level curve?
{

if (width(box) < epsilon) //Box sufficiently small?

{ //plot the box possibly containing points of the level curve
//more precisely: write data points for a plot using gnuplot
//gnuplot command: plot "filename" with lines
out << inf(box.first) << " " << inf(box.second) << endl;
//...

}

else

{
if (width(box.first) > width(box.second))

{
pair<I,I> p = bisect(box.first);
toDo.push_back(make_pair(p.first, box.second));
toDo.push_back(make_pair(p.second, box.second));
}
else
{
pair<I,I> p = bisect(box.second);
toDo.push_back(make_pair(box.first, p.first));
toDo.push_back(make_pair(box.first, p.second));
}

}
}
out << endl;

}

I £f(I x, Iy) //Two dimensional (interval) function
{

I xx=sqr(x), yy=sqr(y);

return sqr(xx + yy + I(4)*x) - xx - yy;
}

int main()
{
traits::setup(); //Do initializations for filib++
double epsilon=0.1;
double level=0.0;
I::precision(16);
I xRange(-10, 10), yRange(-10, 10);
cout << "xRange: " << xRange << endl << "yRange: " << yRange << endl;
levelCurve(f, xRange, yRange, level, epsilon); //Create data for gnuplot
return 0O;

351

The figures show the level curve to level 0 for the function f(z,y) = (22 +y*+4x)— 22 —y>
using the values 0.1 (left figure) and 0.01 (right figure) for the epsilon-parameter.

3 T

T . —
“level” level

In both cases the graph is covered with confidence by the rectangles shown.
To demonstrate that such plots are not trivial the following figures show the result

coming from Maple (the computer algebra system Maple is famous for its great graphical
capabilities). Here, interpolation goes totally wrong near the point of intersection.

\1 \

0.1 $0.08 +0.06 +0.04 +0.02 0 002 004 006 0.1 £0.08 +0.06 +0.04_+0-
X X

0.04 0.06

/ -
The left figure uses the default value for the numpoints parameter of the implicitplot
command, the right picture was generated with numpoints =9000. In both cases the

x-range was from -0.1 to 0.1. Using the x-range from -10 to 1 together with numpoints
default value we get

352

[£1

+2

Such results can be avoided using interval techniques.

Only small modifications in the source code are necessary to transform the program
into source code accepted by Sun’s Forte C++ compilers with interval support or ac-
cepted by the C++ class library C-XSC to be described in the following section.

5. C4++4 Class Library C-XSC. C-XSC is a tool for the development of numer-
ical algorithms delivering highly accurate and automatically verified results. It provides
a large number of predefined numerical data types and operators of maximum accuracy.
These types are implemented as C++ classes. Thus, C—XSC allows high-level program-
ming of numerical applications in C and C++. The C—XSC package is available for
many computers with a C++ compiler conformant to the C++ standard [4, 13]. The
sources of the new version C—XSC 2.0 are freely available.

The most important features of C—-XSC are real, complex, interval, and complex
interval arithmetic with mathematically defined properties; dynamic vectors and ma-
trices; dotprecision data types (accurate dot products); predefined arithmetic operators
with highest accuracy; standard functions of high accuracy; dynamic multiple-precision
arithmetic and standard functions rounding control for I/O data; additional library of
problem-solving routines (C++ Toolbox for Verified Computing [1]).

The just mentioned additional library covers the one-dimensional problems

e Accurate evaluation of polynomials
e Automatic differentiation
e Nonlinear equations in one variable

e Global optimization

Accurate evaluation of arithmetic expressions
e Zeros of complex polynomials

as well as the multi-dimensional problems
353

e Linear systems of equations

Linear optimization

Automatic differentiation for gradients, Jacobians, an Hessian

e Nonlinear systems of Equations

e Global optimization

Further C—XSC packages are freely available or under construction. E. g.

e Verified integration of regular and singular integrals (quadrature and cubature) [17]

Computation of enclosures for Taylor coeficients of analytical functions

Slope arithmetic
e Taylor arithmetic
e Initial value problems in ordinary differential equations”

So, C—-XSC provides a large number of freely available high quality numerical software
tools with automatic result verification. The complete source codes as well as a lot of
documentation are free ly available. See http://www.math.uni-wuppertal.de/"xsc/.

6. Conclusion. The great advantage of the interactive programming tool INTLAB
and the C++ class library C—XSC is the availability of many problem solving routines
(the source codes of the tools itself as well as the sources of the problem solving routines
are public and for free). Such routines are not shipped with Sun’s (commercial) C++
compilers. Sun replaces the traditional interval computations by so called containment
computations. As discussed, containment computations do not rise exceptions. This fact
may be stressed advantageously when writing software for parallel and vector computers.
filib++ also offers an extended interval mode for containment computations. The design
of filib++ is up to date (template programming using traits classes) and the source code
of the library is freely available. An automatic differentiation package and an additional
package providing a slope arithmetic is under construction.

Using the underlying MATLAB functionality INTLAB handles sparse interval ma-
trices, a feature that is not supported by any other tool considered in this paper. Also
midpoint-radius representations of intervals are allowed. Of course, to run INTLAB you
must have (must buy) MATLAB.

A lot of other (more or less specialized) software tools in the field of validated numerics
are available. Links may be found on the web. Whenever you have to compute the
solution to a numerical problem rigorously verified to be correct do not reinvent the
wheel but have a look on software packages already available. For help you can send an
email to reliable_computing@interval.louisiana.edu.

REFERENCES

[1] R. HAMMER, M. Hocks, U. KuLiscH, D. RaTz. C++ Toolbox for Verified Computing.
Basic Numerical Problems. Springer-Verlag, Berlin, 1995.

* Available from R. Lohner
354

[2] W. HOFSCHUSTER, W. KRAMER filib-Sources,
http://www.math.uni-wuppertal.de/org/WRSWT/software.html, 1998.

[3] W. HOFSCHUSTER, W. KRAMER, S. WEDNER, A. WIETHOFF. C-XSC 2.0 — A C++
Class Library for Extended Scientific Computing. Preprint 2001/1, Wissenschaftliches Rech-
nen/Softwaretechnologie, Universitdt Wuppertal, 2001.

[4] ISO/IEC 14882: Standard for the C++ Programming Language, 1998.

[5] R. KraTTE, U. KuLiscH, C. Lawo, M. RAucH, A. WIETHOFF. C—-XSC — A C++ Class
Library for Scientific Computing. Springer-Verlag, Berlin, 1993.

[6] W. KRAMER, J. WOLFF VON GUDENBERG (eds.) Scientific Computing, Validated Numerics,
Interval Methods, Kluwer Academic/Plenum Publishers, 2001.

[7] U. KuLiscH, R. LOHNER, A. FACIUS (eds.) Perspectives on Enclosure Methods, Springer-
Verlag/Wien, 2001.

[8] M. LERCH, J. WOLFF VON GUDENBERG. filib++, Specification, Implementation, and Test
of a Library for Extended Interval Arithmetic. RNC4 proceedings, April 2000.

[9] M. LErRCH, G. TISCHLER, J. WOLFF VON GUDENBERG, W. HOFSCHUSTER, W. KRAMER
The Interval Library filib++ 2.0, Design, Features and Sample Programs. Preprint 2001/4,
Wissenschaftliches Rechnen/Softwaretechnologie, Universitat Wuppertal, 2001.

[10] The MathWorks, Inc. (Publisher): MATLAB, The Language of Technical Computing ,
2001.

[11] S. Rump. INTLAB - INTerval LABoratory. In: Csendes, T. (Ed.), Developments in
Reliable Computing, Kluwer Academic Publisher, Dordrecht, 77-104, 1998.

[12] S. RumP. Fast and Parallel Interval Arithmetic, Bit, 39, No. 3 (Sept. 1999), 534-554.
[13] B. STROUSTRUP The C++ Programming Language. Special Edition, Addison-Wesley,
Reading, Mass., 2000.

[14] Sun Microsystems: C++ Interval Arithmetic Programming Reference (Forte Developer 6
update 2), Sun Microsystems, July 2001.

[15] G. WALSTER. Closed Interval Systems. Technical Report, Sun Microsystems , August
1999.

[16] W. WALSTER, E. HANSEN, J. PRYCE. Extended Real Intervals and the Topological
Closure of Extended Real Relations. Technical Report, Sun Microsystems, Februar 2000.

[17] S. WEDNER. Verifizierte Bestimmung singulérer Integrale — Quadratur und Kubatur.
Dissertation, Universitdt Karlsruhe, 2000.

Walter Kramer
Scientific Computing/Software Engineering
University of Wuppertal, Germany

CbBPEMEHHU CPE/JICTBA 3A TAPAHTUPAHWU IIPECMATAHNA

Banrep Kpemep

lapanTupanu npecMmsiTaHusi, OCHOBAaHU HAa MHTEPBAJIHA aPUTMETHKA, Ca €JIHa ChbBpPe-
MEHHA& TEXHOJIOIHsI 3a OCUI'ypsiBaHe Ha codTyepHa npeHocumoct. B tasm pabora ca
IIPEJICTABEHN HSIKOJIKO TAKMBa CbBPEMEHHU HHTEPBAJHM CpejacTBa. BriodyeHm ca u
HSKOU NPHMEPHHU KOJOBE Ha NMporpamu (I'bJIHUTE KOJIOBE Ca JOCTBHIHU HA CJIEIHUS
agpec: http://www.math.uni-wuppertal.de/wrswt/).

Bubnuorekara INTLAB, Sun’s Forte C++, H03BOJIsIBA KOMIIMJIAIUS C U3IOI3BAHE HA
WHTEpBaJHM onepamun. B jeraitnu ca puckyrupann £ilib++ u C-XSC. Ilomobuu cpe-
CTBa MOraT Jia ce HaMepsIT Ha CJIEJHUSI aJIpec:
http:www.cs.utep.edu/interval-comp/intsoft.html.

355

