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ON THE STABILIZING FEEDBACK CONTROLS"

Mikhail I. Krastanov

It has been proved by R. Brockett that, contrary to the case of linear systems, there
exist small-time locally controllable nonlinear systems that can not be stabilized by
means of stationary continuous feedback law. Following an idea of H. Hermes, we
propose an approach for constructing discontinuous stabilizing feedback controls for
a class of nonlinear systems defined in a neighbourhood of a closed set.

1. Introduction. Let S be a closed subset of R and let us consider the following
control system:

(1) w(t) = flx(t),u(?)),

where z(t) € R" is the state, u(t) € R™ is the control, and f : R®™ x R" — R" is a
smooth map. Starting from states close to the set S we want to steer S and to stay
always close to S. To explain the difficulties related to this problem, let us consider
the case when the set S is a point: Let S = {0} and let us assume that the control
system (1) is small-time local controllable at the origin, i.e. for any T > 0 there exists
a neighbourhood 2 of the origin such that for any point g € €2 there exists an open-
loop control u.,(.) that steers the point z¢ to the origin in time not greater than T.
Since open-loop controls are very sensitive to disturbances, they can lead to very bad
practical results (cf., e.g., [16, Chap. 1, §4]). Taking this into account, one can try to
find a feedback control law that asymptotically stabilizes the system. Such a feedback
has the advantage of compensating automatically all random perturbations (when they
are sufficiently small). A classical result (cf., e.g., [16, Thm. 7, p.134]) shows that the
small-time local controllability of a linear control system implies that this system can be
asymptotically stabilized by means of a stationary continuous feedback. A similar result
does not hold true even for analytic nonlinear control systems. For example, it is pointed
in [2] that the following three-dimensional control system

(2) T=u, Yy =0, =0T —uy

is small-time locally (and even globally) controllable at the origin but does not satisfy the
Brockett necessary condition (cf. [2]), and hence can not be asymptotically stabilized
by means of a continuous feedback law. To overcome the problem of impossibility to
stabilize many controllable nonlinear systems by means of continuous feedback control
laws, two main approaches have been proposed:
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(i) asymptotic stabilization by means of continuous time-varying feedback laws (cf.
for example [7], [8]);

(ii) asymptotic stabilization by means of discontinuous feedback laws (cf. for example
[11], [6]).

In this paper, we extend the results of [11] by studying the problem of small-time local
asymptotic stabilizability (STLAS) with respect to a closed set using a more general class
of high order control variations. The paper is organized as follows: A class of high order
control variations with respect to a closed set is defined in section 2 and a sufficient
condition for the STLAS property is proved. The proof of this sufficient condition can be
used for constructing explicitly stabilizing feedback controls. To show the effectiveness
of the proposed approach, a class of variations of second order are used to stabilize the
control system (2) in a neighbourhood of the origin. Some simulation results (obtained
by the system MAPLE V) are also presented at the end of the paper.

2. The main result. Throughout the paper, we shall use some notations and
definitions we introduce in this section: Let S be an arbitrary closed subset of R™. Let
0 > 0 and Ss be the closed neighbourhood of the set .S consisting of all points = for which
distg(z) < . Here distg (z) denotes the distance between the point z and the set S,
ie.

dists(x) := inf{||z —s| |s € S}.
Let y belong to the boundary 0S5 of the set S. A vector £ € R" is called a proximal
normal to S at y provided there exists a real number r > 0 so that the point y + r¢ has
closest point y in S. The set of all proximal normals at a point y is a cone, and it is
denoted by N%(y) (for a detailed treatment of proximal analysis and its applications, see
for example [4], [5]).

Let U C R™ and f: R® x R* — R" be a smooth map. We consider the following
control system:

3) p(t) = flz(t),u(t)),
where x(t) € R" is the state and u(t) € U is the control.

Let T > 0. Any function k : S5 x[0,7) — U is called a (nonstationary) feedback. Any
countable, strictly increasing sequence m = {¢;}32, with top = 0, and such that llirgo t;i =T
is called a partition of the interval [0, 7). The trajectory z.(zo, k,t), t € [0,T), associated
to the feedback k : S5 x [0,T) — U and to any given partition 7 of [0,T") is defined in
the following step-by-step manner: Let zy be an arbitrary point from Ss. Then between
to and t1, z.(zo, k,-) is an absolutely continuous function (if such a function exists, of
course) such that z;(x0,k,0) = x¢ and for almost every ¢ from [to,¢;] the following
relation holds true

Z.ﬂ'($0) ka t) = f(ZTr(IOa ka t)) k.($05 t))
We set x1 := z;(x0, k,t1). Assuming that x; € S5, we restart the system with control

k(xq,-), i.e. between t1 and ta, z,(zo, k, -) is an absolutely continuous function such that
zx(zo, k,t1) = 21 and for almost every ¢ from [to, t1] the following relation holds true

2.71'(1'0; kat) = f(Zﬂ—(I'(), kat)a k(xlat))
We define z,(xo,k,) on [t;,t;iy1],4 = 2,3,... in the same way.
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Definition 1. It is said that the system (3) is small-time locally asymptotic stabilizable
(STLAS) with respect to the set S iff for every T > O there exist a positive number
d such that for every point xy € Ss \ S there exist a partition ™ of some subinterval
[0,T7) C [0,T] and a feedback k : S5 x [0,Tx) — U such that the corresponding
trajectory zr(xo, k,-) is well defined on [0,T) and satisfies the following conditions:

(a) zr(z0,k,t) € S5 for every t € [0,T,);

®) 1M dists(zn (o, k. 1)) = 0.

t—Tr

Our approach for studying the STLAS property is based on a suitably defined class
of high-order control variations. To define it, we consider the following sets of func-
tions: First, by P we denote the set of all functions p(t),t € R, of the following type:
p(t) = Zlepit‘“, where 1 < ¢ < ¢ < --- < @k, and 0 < p;,¢ = 1,..., k. Further,
we shall also use the notations o(t), 01(t), ..., to indicate any family of vector functions
o(t) : R™ — R™, parameterized on ¢, continuous in (¢,x) and such that for some r > 0
and w > 1 the ratio o(t,z)/t* is bounded uniformly with respect to z € S,. Let A%
be the set of all families of smooth vector functions a(t) : R™ — R™, parameterized on
t, continuous in (¢,z) and such that for every element a(t) from A% there exist some
positive reals 7,  and M such that |la(t,z)|| < M.t% distg(z) for all 2 € S,.

Definition 2. Let S be an arbitrary closed subset of R™ and A : R" — R™ be a
smooth function. It is said that A is a control variation of order « iff there exist positive
real numbers r, P and T, an element p € P, two families of vector functions o(t) and
a(t) € AY such that for every point x from S, \ S and each t € [0,T) there exists a piece-
wice continuous control function uyg : [0,p(t)] — U such that the corresponding trajectory
z(x,ue, -) is defined on [0,p(t)], |p(t)| < Pt and

(4) Z(xvutap(t)) = :L'+taA(:L') +a(t,x)+0(ta,x).
By V§ we denote the set of all control variations of order a.

Remark 1. A natural question is to ask how to construct elements of the set Vg
when a control system is given in the form of differential equation or differential inclusion.
Partial answers are given in [1], [9], [10], [11], [12], [13], [14], [15], [17], [18], [19] and etc.

Definition 3. Let 7 > 0 and T' > 0. It is said that A is a reqular subset of the set Vg
on the set S, x [0,T] provided that there exist positive constants w > «, 8, L, M, N, C
and P such that for every A € A with corresponding p(.), a(t,x) and o(t,z) (according
to definition 1.), the following relations hold true:

i) 1A(z) — A@)| < Lliz—yll for all 2,y from Sy;

i) ||A(z)|| < C for allx from S,;

iii) ||a(z,t))|| < M.t%.dists(z) for all x from S, and allt € [0,T);
i) ||o(z,t*))]] < N.* for all x from S, and all t € [0,T);

v) [p(t)] < Pt forallt e |0,T);

vi) for all x from S, and all t € [0,T]

z(x,ue, p(t)) = x + t*A(z) + a(t, ) + o(t, x),
where uy s the admissible control defined on [0, p(t)] (according to Definition 1).

Now we can formulate the main result
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Theorem 1. Let S be a closed subset of R™, u > 0, Tog > 0, 69 > 0 and let A be a
regular subset of the set V& on Ss, x [0,Tp]. Let us assume that whenever y belongs to
the boundary 8S of the set S and & € NE(y) there exists A €V for which

(5) <& Ay) > < —pfll
Then the control system (3) is STLAS with respect to S.

3. Numerical results. The idea of the proof of the main result is to move towards
the set S using suitable high-order control variations defined on suitable intervals of time.
For an illustrative example, we consider the following three-dimensional control system

1 = u, 21(0) =0, wel-1,1],

T =, 22(0) =0, wve[-1,1],

&3 = vry —uxe, x3(0) =0,
which is small-time locally controllable at the origin but does not satisfy the Brockett
necessary condition (cf. [2]), and hence can not be asymptotic stabilized by means of
a continuous feedback law. Let # = (z1,72,73)%, B(x) = (1,0,—22)T and C(z) =
(0,1,71)T. Then the Lie bracket [B, C](-) of the vector fields B(-) and C() is

[B,C)(z) := 0C(z)B(z) — 9B(z)C(x) = (0,0,2)",

where by dB(-) and 0C(-) are denoted the Jacobians of B(-) and C(-), respectively.

The considered control system belongs to the class of the so called “symmetric” control
systems (cf. [3]). So, it is natural to assume that all nonvanishing Lie brackets belong to
the set of high-order control variations. Indeed, studying the set of admissible trajectories
of this control system, one can find the following control variations of second order: Let
B = (B1,P2,03)T, where 3; € [-1,1], i = 1,2,3. We define the following admissible
control:

u= 03, v=0, for T € ]0,¢);
u=0, v=1, for 7 € [t, 2t)
ug(r) = u=—0, v=0, for T € [2t3t);
[

u=0, v=-—1, for 7 € [3t,4t)
u=p0, v=_P0, forr €[4t 4t+t?);

It could be directly verified that the corresponding trajectory z(z,ug,-) is defined on
0,4t + t?] and

2(w,up, 4t + %) = @+ 2 (61B(x) + G2C(x) + B3[B, C)()) .
Now we define the following stabilizing feedback ug,) on Q x [0, 4t, + ¢3], where
Q = {o=(z1,22,23)" ¢ |21| <1, |32 <1, 23] <2} and t, == /||

Since B(0), C(0) and [B, C](0) are linearly independent, every point z € € can be present
as follows

z = ai1(x)B(0) + a2(z)C(0) + as(x)[B,C](0), with |a;(x)] <1, i=1,2,3.
We set (similarly to [11])

i (x) as(z) |as(z)]|
Bi(x) := ————=, Ba(z) := — , and f5(z) = —
] ] ]
and use the feedback control ug(,) on the interval [0, 4¢, + ¢2). The condition (5) holds
true with 4 = —1. According to the main result, this control system is STLAS. Moreover,
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it could be verified directly that the corresponding trajectory z(x,ug(s),-) is defined on
0,48, + t2] and Zz := z(x,up(y), 4tz +t2) = 0. Choosing different starting points x
from €2, we apply this feedback control. All computer simulations are performed using
the computer algebra system Maple V. Some of the corresponding numerical results are
presented in the next table:

1 T9 T3 te 1 Zo Z3
1/3|-2/3] 5/3 </¥ 0 0 —6.10710
1/3| 2/3 | —5/3 f/@ 0 —3.10710 | —5.10710
1 1 -2 | V6 | -3.10710 0 16.1010
1| -1 2 V6 0 0 0
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CTABMNJIN3NPAITINN OBPATHU BP'b3KN

Muxann . Kpbcrtanos

P. Bpoker moka3sBa, de (3a pasjuKa OT JIMHEHHUs CJlydail) CbIIECTBYBAT JIOKAJIHO
VIpaBjIsieMd CUCTEMHU 3a MAJKO BpEMe, KOUTO He MOrar ja ObJar cTabujn3upaHu ¢
HenpeKk'bCcHaTa obpaTHa Bpb3Ka. CiienBaiiku eqHa njes: Ha X. XepMec, B Ta3u pabora
€ IpeJUIOXKEH IIOXO0/T 33 KOHCTpyUpaHe Ha IPEKbCHaTa 00paTHa BPb3Ka B OKOJHOCT
HA 3aTBOPEHO MHOYKECTBO.

361



