PROPERTIES OF THE (3,2)-LANGUAGES RECOGNIZED BY (3,2)-SEMIGROUP AUTOMATA

Violeta Manevska, Donco Dimovski

> The aim of this paper is to examine properties of (3,2)-languages which is recognized by finite $(3,2)$-semigroup automata.
> Key words: $(3,2)$-semigroup, semigroup automata, (3,2)-semigroup automata, nondeterministic $(3,2)$-automata, languages, $(3,2)$-languages

Introduction. Here we recall the necessary definitions and known results. From now on, let B be a nonempty set and let (B, \cdot) be a semigroup, where \cdot is a binary operation.

A semigroup automaton is a triple $(S,(B, \cdot), f)$, where S is a set, (B, \cdot) is a semigroup, and $f: S \times B \rightarrow S$ is a map satisfying
$f(f(s, x), y)=f(s, x \cdot y)$ for every $s \in S, x, y \in B$.
The set S is called the set of states of $(S,(B, \cdot), f)$ and f is called the transition function of $(S,(B, \cdot), f)$.

A nonempty set B with the (3,2)-operation $\left\}: B^{3} \rightarrow B^{2}\right.$ is called a (3,2)-semigroup iff the following equality

$$
\{\{x y z\} t\}=\{x\{y z t\}\}
$$

is an identity for every $x, y, z, t \in B$. It is denoted with the pair $(B,\{ \})$.
Example 1. Let $B=\{a, b\}$. Then the (3,2)-semigroup $(B,\{ \})$ is given by Table 1 .

$\}$	
$a a a$	(b, a)
$a a b$	(a, a)
$a b a$	(a, a)
$a b b$	(b, a)
$b a a$	(a, a)
$b a b$	(b, a)
$b b a$	(b, a)
$b b b$	(a, a)

Table 1

This example of (3,2)-semigroup is generated by an appropriate computer program.
A (deterministic) (3,2)-semigroup automaton is a triple $(S,(B,\{ \}), f)$, where S is a set, $(B,\{ \})$ is a (3,2)-semigroup, and $f: S \times B^{2} \rightarrow S \times B$ is a map satisfying $f(f(s, x, y), z)=f(s,\{x y z\})$ for every $s \in S, x, y, z, \in B$.
The set S is called the set of states of $(S,(B,\{ \}, f)$ and f is called the transition function of $(S,(B,\{ \}), f)$.

Example 2. Let $(B,\{ \})$ be an (3,2)-semigroup given by Table 1 from Example 1 and $S=\left\{s_{0}, s_{1}, s_{2}\right\}$. A (3,2)-semigroup automaton $(S,(B,\{ \}), f)$ is given by Table 2.

f	(a, a)	(a, b)	(b, a)	(b, b)
s_{0}	$\left(s_{1}, b\right)$	$\left(s_{2}, b\right)$	$\left(s_{2}, b\right)$	$\left(s_{1}, b\right)$
s_{1}	$\left(s_{1}, b\right)$	$\left(s_{0}, a\right)$	$\left(s_{2}, b\right)$	$\left(s_{1}, b\right)$
s_{2}	$\left(s_{2}, b\right)$	$\left(s_{0}, b\right)$	$\left(s_{1}, b\right)$	$\left(s_{2}, b\right)$

Table 2
This example of (3,2)-semigroup automaton is generated by computer.
Let $(Q,[])$ be a free $(3,2)$-semigroup with a basis B constructed in [1].
Any subset $L^{(3,2)}$ of the universal language $Q^{*}=\cup_{p \geq 1} Q^{p}$, where Q is a free (3,2)semigroup with a basis B, is called a (3,2)-language on the alphabet B.

A (3,2)-language $L^{(3,2)} \subseteq Q^{*}$ is called recognizable if there exists:
(1) an (3,2)-semigroup automaton $(S,(B,\{ \}), f)$, where the set S is finite;
(2) an initial state $s_{0} \in S$;
(3) a subset $T \subseteq S$; and
(4) a subset $C \subseteq B$ such that
$L^{(3,2)}=\left\{w \in Q^{*} \mid \bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right) \in T \times C\right\}$,
where $(S,(Q,[]), \bar{\varphi})$ is the (3,2)-semigroup automaton constructed in [2] for the (3,2)semigroup automaton $(S,(B,\{ \}), f)$.

We also say that the (3,2)-semigroup automaton $(S,(B,\{ \}), f)$ recognizes $L^{(3,2)}$, or that $L^{(3,2)}$ is recognized by $(S,(B,\{ \}), f)$.

Example 3. Let $(S,(B,\{ \}), f)$ be a $(3,2)$-semigroup automaton given in Example 2. We construct the (3,2)-semigroup automaton $(S,(Q,[]), \bar{\varphi})$ for the (3,2)-semigroup auto maton $(S,(B,\{ \}), f)$. A (3,2)-language $L^{(3,2)}$, which is recognized by the (3,2)-semigroup automaton $(S,(Q,[]), \bar{\varphi})$, with initial state s_{0} and terminal state $\left(s_{2}, b\right)$ is
$L^{(3,2)}=\left\{w \in Q^{*} \mid w=w_{1} w_{2} \ldots w_{q}, q \geq 3\right.$, where $w_{l}=\left\{\begin{array}{l}\left(u_{1}^{n}, i\right), n \geq 3, u_{\alpha} \in Q \\ \left(a^{*} b^{*}\right)^{*}\end{array}\right.$, $l \in\{1,2, \ldots, q\}$, and:
a) If $i=1$, then:
a1) $\left(u_{1}^{n}, 1\right)=a$, where $\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=a^{t} b^{j} a^{r} b^{h}$ and $t+r=2 k, t+j+r+h=$ $n, t, j, r, h, k \in\{0,1,2, \ldots\}, k \geq 1$;
a2) $\left(u_{1}^{n}, 1\right)=b$, where $\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=a^{t} b^{j} a^{r} b^{h}$ and $t+r=2 k+1, t+j+$ $r+h=n, t, j, r, h, k \in\{0,1,2, \ldots\}, k \geq 1$;
b) If $i=2$, then $\left(u_{1}^{n}, 2\right)=a$, where $\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=\left(a^{*} b^{*}\right)^{*}$
and $\left.\psi_{p}\left(w_{1}\right) \ldots \psi_{p}\left(w_{q}\right)=b^{*}\left(a b^{*}\right)^{2 k+1}\right\}$.
2. A nondeterministic (3,2)-semigroup automaton. A nondeterministic (3,2)semigroup automaton is a triple $(S,(B,\{ \}), g)$, wh ere S is a set, $(B,\{ \})$ is a $(3,2)$ semigroup, $P(S \times B)$ is a subset of $S \times B$ and $g: S \times B^{2} \rightarrow P(S \times B)$ is a map satisfying $g(g(s, x, y), z)=g(s,\{x y z\})$ for every $s \in S, x, y, z, \in B$. We denote $g(X, y)=\cup_{(t, a) \in X} g(t, a, y)$ for $X \in S \times B$.

Theorem. Let $L_{1}^{(3,2)}$ and $L_{2}^{(3,2)}$ be (3,2)-languages which is recognized by (3,2)semigroup automata $\left(S_{1},(B,\{ \}), f_{1}\right)$ and $\left(S_{2},(B,\{ \}), f_{2}\right)$, with initial state $s s_{0}^{\prime}$ and $s_{0}^{\prime \prime}$, and sets of terminal states $T_{1} \times C_{1}$ and $T_{2} \times C_{2}$. Then:
a) $L_{1}^{(3,2)} \cup L_{2}^{(3,2)}$;
b) $\bar{L}_{1}^{(3,2)}$;
c) $L_{1}^{(3,2)} \times L_{2}^{(3,2)}$;
d) $L_{1}^{(3,2)} L_{2}^{(3,2)}$;
e) $L_{1}^{(3,2)} L_{1}^{(3,2)} \ldots L_{1}^{(3,2)}$ are recognizable (3,2)-languages with nondeterministic (3,2)-semigroup automaton ($S,(B,\{ \}$) ,g).

Proof. In each case we show how to construct a nondeterministic (3,2)-semigroup automaton fro m one or two given (3,2)-semigroup automata. Without loss of generality, we may assume that S_{1} a nd S_{2} are disjoint sets and e is a empty or dead letter.
a) We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{ \}), g)$ as follows:
$S=S_{1} \cup S_{2} \cup\left\{s_{0}\right\}$, where s_{0} is a new initial state not in S_{1} or $S_{2} ;$

$$
\begin{gathered}
g(s, x, y)=\left\{\begin{aligned}
f_{1}(s, x, y), & s \in S_{1} \\
f_{2}(s, x, y), & s \in S_{2} \\
\left(s_{0}, e\right), & s=s_{0}
\end{aligned}\right. \\
f_{1}(s, x, e)=f_{1}(s, e, x)=(s, x) ; f_{2}(s, x, e)=f_{2}(s, e, x)=(s, x) ; \\
g\left(s_{0}, x, e\right)=f\left(s_{0}, e, x\right)=\left(s_{0}, x\right) ; \\
g\left(s_{0}, e, e\right)=\left\{\left(s_{0}^{\prime}, e\right),\left(s_{0}^{\prime \prime}, e\right)\right\} ;
\end{gathered}
$$

for every $x, y \in B$;

$$
T=T_{1} \cup T_{2} ; C=C_{1} \cup C_{2}
$$

That is, $(S,(B,\{ \}), g)$ begins any computation by nondeterministically choosing to enter e ither with $g\left(s_{0}, e, e\right)=\left(s_{0}^{\prime}, e\right)$ or $g\left(s_{0}, e, e\right)=\left(s_{0}^{\prime \prime}, e\right)$, and thereafter $(S,(B,\{ \}), g)$ imitates either $\left(S_{1},(B,\{ \}), f_{1}\right)$ or $\left(S_{2},(B,\{ \}), f_{2}\right)$.

Let $L^{(3,2)}$ be a (3,2)-language which is recognized by nondeterministic (3,2)-semigroup automat on $(S,(B,\{ \}), g)$.Then
$w \in L^{(3,2)} \Longleftrightarrow w \in Q^{*}$ and $\bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right) \in T \times C \Longleftrightarrow w i n Q^{*}$ and
$\bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right)=\left\{\begin{array}{l}\bar{\varphi}\left(s_{0}^{\prime},(w, 1),(w, 2)\right)=\overline{\varphi_{1}}\left(s_{0}^{\prime},(w, 1),(w, 2)\right) \in T_{1} \times C_{1} \\ \bar{\varphi}\left(s_{0}^{\prime \prime},(w, 1),(w, 2)\right)=\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},(w, 1),(w, 2)\right) \in T_{2} \times C_{2} .\end{array}\right.$.

Hence $L^{(3,2)}=\left\{w \in Q^{*} \mid \bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right)=\overline{\varphi_{1}}\left(s_{0}^{\prime},(w, 1),(w, 2)\right) \in T_{1} \times C_{1}\right.$ or $\left.\bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right)=\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},(w, 1),(w, 2)\right) \in T_{2} \times C_{2}\right\}$

$$
=\left\{w \in Q^{*} \mid \overline{\varphi_{1}}\left(s_{0}^{\prime},(w, 1),(w, 2)\right) \in T_{1} \times C_{1}\right\} \cup\left\{w \in Q^{*} \mid \overline{\varphi_{2}}\left(s_{0}^{\prime \prime},(w, 1),(w, 2)\right) \in T_{2} \times C_{2}\right\}
$$

$$
=L_{1}^{(3,2)} \cup L_{2}^{(3,2)}
$$

b) A complementation of a (3,2)-language $L^{(3,2)}$ is the (3,2)-language $\bar{L}^{(3,2)}=Q^{*} \backslash L^{(3,2)}$.

We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{ \}), g)$ with initial stat e s_{0} and terminal states $(S \times B) \backslash(T \times C)$.
$w \in L^{(3,2)} \Longleftrightarrow w \in Q^{*}$ and

$$
\bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right) \in(S \times B) \backslash(T \times C) \Longleftrightarrow w \in Q^{*} \backslash L^{(3,2)} .
$$

So
$\bar{L}^{(3,2)}=\left\{w \in Q^{*} \mid \bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right) \notin T \times C\right\}=Q^{*} \backslash L^{(3,2)}$.
c) We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{ \}), g)$ which recogniz es (3,2)-language $L_{1}^{(3,2)} \times L_{2}^{(3,2)}$ as follows:
$S=S_{1} \times S_{2} ; B=B_{1} \times B_{2} ; C=C_{1} \times C_{2} ; T=T_{1} \times T_{2} ;$
$g=f_{1} \times f_{2}$ defined by $\left.\left(f_{1} \times f_{2}\right)\left(s_{1}, s_{2}\right),\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=$
$=\left(\pi_{1}\left(f_{1}\left(s_{1}, x_{1}, x_{2}\right)\right), \pi_{1}\left(f_{2}\left(s_{2}, y_{1}, y_{2}\right)\right), \pi_{2}\left(f_{1}\left(s_{1}, x_{1}, x_{2}\right)\right), \pi_{2}\left(f_{2}\left(s_{2}, y_{1}, y_{2}\right)\right)\right)$,
where $\pi_{i}, i=1,2$ is a i-th projection of the argument.
Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-semigroup automat on $(S,(B,\{ \}), g)$.
$w \in L^{(3,2)} \Longleftrightarrow w=\left(w^{\prime}, w^{\prime \prime}\right) \in Q_{1}^{*} \times Q_{2}^{*}$ and
$\left.\bar{\varphi}\left(\left(s_{0}^{\prime}, s_{0}^{\prime \prime}\right),\left(w^{\prime}, 1\right),\left(w^{\prime \prime}, 1\right),\left(w^{\prime}, 2\right),\left(w^{\prime \prime}, 2\right)\right)\right) \in\left(T_{1} \times T_{2}\right) \times\left(C_{1} \times C_{2}\right)$
$\Longleftrightarrow\left(w^{\prime}, w^{\prime \prime}\right) \in Q_{1}^{*} \times Q_{2}^{*}$ and
$\left.\bar{\varphi}\left(\left(s_{0}^{\prime}, s_{0}^{\prime \prime}\right),\left(w^{\prime}, 1\right),\left(w^{\prime \prime}, 1\right),\left(w^{\prime}, 2\right),\left(w^{\prime \prime}, 2\right)\right)\right)=\left(\pi_{1}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right)\right)\right.$,
$\pi_{1}\left(\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right)\right), \pi_{2}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right)\right), \pi_{2}\left(\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right)\right)$
$\in\left(T_{1} \times T_{2}\right) \times\left(C_{1} \times C_{2}\right)$
$\Longleftrightarrow w^{\prime} \in Q_{1}^{*}$ and $\left(\pi_{1}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right)\right), \pi_{2}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right)\right)\right) \in T_{1} \times C_{1}$
$w^{\prime \prime} \in Q_{2}^{*}$ and $\left(\pi_{1}\left(\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right)\right), \pi_{2}\left(\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right)\right)\right) \in T_{2} \times C_{2}$
$\Longleftrightarrow w^{\prime} \in Q_{1}^{*}$ and $\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right) \in T_{1} \times C_{1}$
$w^{\prime \prime} \in Q_{2}^{*}$ and $\overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right) \in T_{2} \times C_{2}$.
Hence $L^{(3,2)}=\left\{w \in Q_{1}^{*} \times Q_{2}^{*} \mid w=\left(w^{\prime}, w^{\prime \prime}\right)\right.$ and
$\left.\left.\bar{\varphi}\left(\left(s_{0}^{\prime}, s_{0}^{\prime \prime}\right),\left(w^{\prime}, 1\right),\left(w^{\prime \prime}, 1\right),\left(w^{\prime}, 2\right),\left(w^{\prime \prime}, 2\right)\right)\right) \in\left(T_{1} \times T_{2}\right) \times\left(C_{1} \times C_{2}\right)\right\}=$
$\left\{w \in Q_{1}^{*} \times Q_{2}^{*} \mid w=\left(w^{\prime}, w^{\prime \prime}\right)\right.$ and $\overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right) \times \overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right) \in$ $\left.\left(T_{1} \times C_{1}\right) \times\left(T_{2} \times C_{2}\right)\right\}=$
$\left\{w^{\prime} \in Q_{1}^{*} \mid \overline{\varphi_{1}}\left(s_{0}^{\prime},\left(w^{\prime}, 1\right),\left(w^{\prime}, 2\right)\right) \in T_{1} \times C_{1}\right\} \times\left\{w^{\prime \prime} \in Q_{2}^{*} \mid \overline{\varphi_{2}}\left(s_{0}^{\prime \prime},\left(w^{\prime \prime}, 1\right),\left(w^{\prime \prime}, 2\right)\right) \in\right.$ $\left.T_{2} \times C_{2}\right\}=L_{1}^{(3,2)} \times L_{2}^{(3,2)}$.
d) We construct a nondeterministic (3,2)-automaton $(S,(B,\{ \}), g)$ with initial state s_{0}^{\prime} and sets of terminal states $T_{2} \times C_{2}$ as follows:
$S=S_{1} \cup S_{2} ; f_{1}(s, e, e)=(s, e)$, for all $s \in S_{1}$,
$f_{2}(s, e, e)=(s, e)$, for all $s \in S_{2}, f_{1}(s, x, e)=\left(s_{0}^{\prime \prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$,
$f_{1}(s, x, e)=f_{1}(s, e, x)=(s, x)$, for $(s, x) \in\left(B \times S_{1}\right) \backslash\left(T_{1} \times C_{1}\right)$,
$f_{2}(s, x, e)=f_{2}(s, e, x)=(s, x)$, for $x \in B, s \in S_{2}$,
$g(s, x, y)=\left\{\begin{array}{ll}f_{1}(s, x, y), & s \in S_{1} \\ f_{2}(s, x, y), & s \in S_{2}\end{array}\right.$.
In this way, $(S,(B,\{ \}), g)$ operates by simulating $\left(S_{1},(B,\{ \}), f_{1}\right)$ for a while, and then "jumping" nondeterministically from a terminal state of $\left(S_{1},(B,\{ \}), f_{1}\right)$ with $f_{1}(s, x, e)=$ $\left(s_{0}^{\prime \prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$, to the initial state of $\left(S_{2},(B,\{ \}), f_{2}\right)$. Thereafter, $(S,(B,\{ \}), g)$ imitates $\left(S_{2},(B,\{ \}), f_{2}\right)$.

Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-automaton $(S,(B,\{ \}), g)$.
$w \in L^{(3,2)} \Longleftrightarrow w=w^{\prime} w^{\prime \prime} \in Q^{*},\left|w^{\prime}\right|,\left|w^{\prime \prime}\right|>1$ and $\bar{\varphi}\left(s_{0}^{\prime},(w, 1),(w, 2)\right) \in T_{2} \times C_{2}$
$\Longleftrightarrow w=w^{\prime} w^{\prime \prime} \in Q^{*}$ and $\bar{\varphi}\left(s_{0}^{\prime}, w^{\prime} w^{\prime \prime}\right)=\bar{\varphi}\left(\bar{\varphi}\left(s_{0}^{\prime}, w^{\prime}\right), w^{\prime \prime}\right)=\bar{\varphi}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime}, w^{\prime}\right), w^{\prime \prime}\right)$.
Let $\overline{\varphi_{1}}\left(s_{0}^{\prime}, w^{\prime}\right)=(s, x) \in T_{1} \times C_{1}$. By $f_{1}(s, x, e)=\left(s_{0}^{\prime \prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$, we go in initial state $s_{0}^{\prime \prime}$ of (3,2)-semigroup automaton $\left(S_{2},(B,\{ \}), f_{2}\right)$. Then
$\bar{\varphi}\left(s_{0}^{\prime \prime}, e, w^{\prime \prime}\right)=\bar{\varphi}\left(s_{0}^{\prime \prime}, w^{\prime \prime}\right)=\overline{\varphi_{2}}\left(s_{0}^{\prime \prime}, w^{\prime \prime}\right) \in T_{2} \times C_{2}$.

Hence

$L^{(3,2)}=\left\{w \in Q^{*} \mid w=w^{\prime} w^{\prime \prime}\right.$, for $\left|w^{\prime}\right|,\left|w^{\prime \prime}\right|>1$ and
$\left.\bar{\varphi}\left(s_{0}^{\prime}, w^{\prime} w^{\prime \prime}\right)=\bar{\varphi}\left(\bar{\varphi}\left(s_{0}^{\prime \prime}, w^{\prime}\right), w^{\prime \prime}\right)=\bar{\varphi}\left(s_{0}^{\prime \prime}, e, w^{\prime \prime}\right)=\overline{\varphi_{2}}\left(s_{0}^{\prime \prime}, e, w^{\prime \prime}\right) \in T_{2} \times C_{2}\right\}$
$=L_{1}^{(3,2)} L_{2}^{(3,2)}$.
e) We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{ \}), g)$ with initial s tate s_{0}^{\prime} and sets of terminal states $T_{1} \times C_{1}$ as follows:
$S=S_{1} ;$
$g(s, x, e)=\left(s_{0}^{\prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$,
$g(s, x, e)=g(s, e, x)=(s, x)$, for $(s, x) \in\left(S_{1} \times B\right) \backslash\left(T_{1} \times C_{1}\right)$,
$g(s, x, y)=f_{1}(s, x, y)$, for $\left(s \in S_{1}\right.$ and $x, y \in B$.
Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-automaton $(S,(B,\{ \}), g)$.
$w \in L^{(3,2)} \Longleftrightarrow w=w_{1} w_{2} \ldots w_{t} \in Q^{*},\left|w_{1}\right|,\left|w_{2}\right|, \ldots,\left|w_{t}\right|>1$ and
$\bar{\varphi}\left(s_{0}^{\prime},(w, 1),(w, 2)\right) \in T_{2} \times C_{2} \Longleftrightarrow w=w_{1} w_{2} \ldots w_{t} \in Q^{*}$ and $\bar{\varphi}\left(s_{0}^{\prime}, w_{1} w_{2} \ldots w_{t}\right)=$ $\bar{\varphi}\left(\bar{\varphi}\left(s_{0}^{\prime}, w_{1}\right), w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{1}\right), w_{2} \ldots w_{t}\right)$.

Let $\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{1}\right)=(s, x) \in T_{1} \times C_{1}$. By $g(s, x, e)=\left(s_{0}^{\prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$, we go again in initial state s_{0}^{\prime} of (3,2)-semigroup automaton $\left.\left(S_{1},(B\},\right), f_{1}\right)$. Then
$\bar{\varphi}\left(s_{0}^{\prime}, e, w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(s_{0}^{\prime}, w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(\bar{\varphi}\left(s_{0}^{\prime}, w_{2}\right), w_{3} \ldots w_{t}\right)=$
$\bar{\varphi}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{2}\right), w_{3} \ldots w_{t}\right)$.
$\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{2}\right) \in T_{1} \times C_{1}$, so with $g(s, x, e)=\left(s_{0}^{\prime}, e\right)$, for $(s, x) \in T_{1} \times C_{1}$, we go again in initial state s_{0}^{\prime} of (3,2)-semigroup automaton $\left(S_{1},\left(B,\{), f_{1}\right)\right.$. This procedure continues for other $(3,2)$-subwords $w_{2} \ldots w_{t}$. Finally, we have $\bar{\varphi}\left(s_{0}^{\prime}, w_{t}\right)=\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{t}\right) \in T_{1} \times C_{1}$.
Hence $L^{(3,2)}=\left\{w \in Q^{*}\left|w=w_{1} w_{2} \ldots w_{t},\left|w_{1}\right|,\left|w_{2}\right|, \ldots,\left|w_{t}\right|>1\right.\right.$ and
$\bar{\varphi}\left(s_{0}^{\prime}, w_{1} w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{1}\right), w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(s_{0}^{\prime}, e, w_{2} \ldots w_{t}\right)=\bar{\varphi}\left(s_{0}^{\prime}, w_{2} \ldots w_{t}\right)=$ $\left.\ldots=\bar{\varphi}\left(s_{0}^{\prime}, w_{t}\right)=\overline{\varphi_{1}}\left(s_{0}^{\prime}, w_{t}\right)=\in T_{1} \times C_{1}\right\}=L_{1}^{(3,2)} L_{1}^{(3,2)} \ldots L_{1}^{(3,2)}$.

REFERENCES

[1] D. Dimovski. Free Vector Valued Semigroups, Proc. Conf. "Algebra and Logic", Cetinje 1986, 55-62.
[2] D. Dimovski, V. Manevska. Vector Valued $(n+k, n)$-Formal Languages $(1 \leq k \leq n)$, 10th Congress of Yugoslav Mathematicians, Belgrade 1988, 153-159.
[3] K. Trencevski, D. Dimovski. Complex commutative vector valued groups, Maced. Acad. Sci. and Arts, Skopje, 1992.

Violeta Manevska
Faculty of Tehnical Sciences
Bitola, Macedonia
e-mail: violeta.manevska@uklo.edu.mk
Donco Dimovski
Institute of Mathematics
Faculty of Mathematics and Natural Sciences
Skopje, Macedonia
e-mail: donco@iunona.pmf.ukim.edu.mk

СВОЙСТВА НА (3,2)-ЕЗИЦИ, РАЗПОЗНАВАНИ ОТ $(3,2)-П О Л У Г Р У П О В И ~ А В Т О М А Т И ~$

Виолета Маневска, Донко Димовски

Целта на статията е да изследва свойствата на (3,2)-езици, които се разпознават от крайни (3,2)-полугрупови автомати.

