МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2002 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002 Proceedings of Thirty First Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 3–6, 2002

PROPERTIES OF THE (3,2)-LANGUAGES RECOGNIZED BY (3,2)-SEMIGROUP AUTOMATA

Violeta Manevska, Donco Dimovski

The aim of this paper is to examine properties of (3,2)-languages which is recognized by finite (3,2)-semigroup automata.

Key words: (3,2)-semigroup, semigroup automata, (3,2)-semigroup automata, nondeterministic (3,2)-automata, languages, (3,2)-languages

Introduction. Here we recall the necessary definitions and known results. From now on, let B be a nonempty set and let (B, \cdot) be a semigroup, where \cdot is a binary operation.

A semigroup automaton is a triple $(S, (B, \cdot), f)$, where S is a set, (B, \cdot) is a semigroup, and $f: S \times B \to S$ is a map satisfying

 $f(f(s, x), y) = f(s, x \cdot y)$ for every $s \in S, x, y \in B$.

The set S is called the set of states of $(S, (B, \cdot), f)$ and f is called the transition function of $(S, (B, \cdot), f)$.

A nonempty set B with the (3,2)-operation $\{\}: B^3 \to B^2$ is called **a** (3,2)-semigroup iff the following equality

$$\{\{xyz\}t\} = \{x\{yzt\}\}\$$

is an identity for every $x, y, z, t \in B$. It is denoted with the pair $(B, \{\})$.

Example 1. Let $B = \{a, b\}$. Then the (3,2)-semigroup $(B, \{\})$ is given by Table 1.

{ }	
aaa	(b,a)
aab	(a,a)
aba	(a,a)
abb	(b,a)
baa	(a,a)
bab	(b,a)
bba	(b,a)
bbb	(a,a)

Table 1

368

This example of (3,2)-semigroup is generated by an appropriate computer program.

A (deterministic) (3,2)-semigroup automaton is a triple $(S,(B,\{ \}),f)$, where S is a set, $(B,\{ \})$ is a (3,2)-semigroup, and $f:S \times B^2 \to S \times B$ is a map satisfying $f(f(s,x,y),z)=f(s,\{xyz\})$ for every $s \in S, x,y,z, \in B$.

The set S is called the set of states of $(S, (B, \{\}, f))$ and f is called the transition function of $(S, (B, \{\}), f)$.

Example 2. Let $(B, \{\})$ be an (3,2)-semigroup given by Table 1 from Example 1 and $S = \{s_0, s_1, s_2\}$. A (3,2)-semigroup automaton $(S, (B, \{\}), f)$ is given by Table 2.

f	(a,a)	(a,b)	(b,a)	(b,b)	
s_0	(s_1,b)	(s_2, b)	(s_2,b)	(s_1,b)	
s_1	(s_1,b)	(s_0, a)	(s_2,b)	(s_1,b)	
s_2	(s_2,b)	(s_0,b)	(s_1,b)	(s_2,b)	
Table 2					

This example of (3,2)-semigroup automaton is generated by computer.

Let (Q, []) be a free (3,2)-semigroup with a basis B constructed in [1]. Any subset $L^{(3,2)}$ of the universal language $Q^* = \bigcup_{p \ge 1} Q^p$, where Q is a free (3,2)-semigroup with a basis B, is called **a (3,2)-language** on the alphabet B.

A (3,2)-language $L^{(3,2)} \subseteq Q^*$ is called **recognizable** if there exists:

- (1) an (3,2)-semigroup automaton $(S, (B, \{\}), f)$, where the set S is finite;
- (2) an initial state $s_0 \in S$;
- (3) a subset $T \subseteq S$; and
- (4) a subset $C \subseteq B$ such that
- $L^{(3,2)} = \{ w \in Q^* | \overline{\varphi}(s_0, (w, 1), (w, 2)) \in T \times C \},\$

where $(S, (Q, []), \overline{\varphi})$ is the (3,2)-semigroup automaton constructed in [2] for the (3,2)-semigroup automaton $(S, (B, \{\}), f)$.

We also say that the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$ recognizes $L^{(3,2)}$, or that $L^{(3,2)}$ is recognized by $(S, (B, \{ \}), f)$.

Example 3. Let $(S, (B, \{ \}), f)$ be a (3,2)-semigroup automaton given in Example 2. We construct the (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$ for the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$. A (3,2)-language $L^{(3,2)}$, which is recognized by the (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$, with initial state s_0 and terminal state (s_2, b) is

$$L^{(3,2)} = \{ w \in Q^* | w = w_1 w_2 \dots w_q, q \ge 3, \text{ where } w_l = \begin{cases} (u_1^n, i), n \ge 3, u_\alpha \in Q \\ (a^* b^*)^* \end{cases} ,$$

 $l \in \{1, 2, \dots, q\}$, and:

a) If i = 1, then:

a1) $(u_1^n, 1) = a$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = a^t b^j a^r b^h$ and $t+r = 2k, t+j+r+h = n, t, j, r, h, k \in \{0, 1, 2, \dots\}, k \ge 1;$

369

a2) $(u_1^n, 1) = b$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = a^t b^j a^r b^h$ and $t + r = 2k + 1, t + j + r + h = n, t, j, r, h, k \in \{0, 1, 2, \dots\}, k \ge 1;$

b) If i = 2, then $(u_1^n, 2) = a$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = (a^*b^*)^*$ and $\psi_p(w_1) \dots \psi_p(w_q) = b^*(ab^*)^{2k+1}$ }.

2. A nondeterministic (3,2)-semigroup automaton. A nondeterministic (3,2)-semigroup automaton is a triple $(S,(B,\{\}),g)$, where S is a set, $(B,\{\})$ is a (3,2)-semigroup, $P(S \times B)$ is a subset of $S \times B$ and $g:S \times B^2 \to P(S \times B)$ is a map satisfying $g(g(s,x,y),z)=g(s,\{xyz\})$ for every $s \in S$, $x,y,z,\in B$. We denote $g(X,y) = \cup_{(t,a)\in X} g(t,a,y)$ for $X \in S \times B$.

Theorem. Let $L_1^{(3,2)}$ and $L_2^{(3,2)}$ be (3,2)-languages which is recognized by (3,2)semigroup automata $(S_1, (B, \{\}), f_1)$ and $(S_2, (B, \{\}), f_2)$, with initial state $s \ s'_0$ and s''_0 ,
and sets of terminal states $T_1 \times C_1$ and $T_2 \times C_2$. Then:
a) $L_1^{(3,2)} \cup L_2^{(3,2)}$;
b) $\overline{L}_1^{(3,2)}$;
c) $L_1^{(3,2)} \times L_2^{(3,2)}$;
d) $L_1^{(3,2)} L_2^{(3,2)}$;
e) $L_1^{(3,2)} L_1^{(3,2)}$... $L_1^{(3,2)}$ are recognizable (3,2)-languages with nondeterministic (3,2)-semigroup
automaton $(S, (B, \{\}), g)$.

Proof. In each case we show how to construct a nondeterministic (3,2)-semigroup automaton from one or two given (3,2)-semigroup automata. Without loss of generality, we may assume that S_1 and S_2 are disjoint sets and e is a empty or dead letter.

a) We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{\}),g)$ as follows:

$$\begin{split} S = S_1 \cup S_2 \cup \{s_0\}, \text{ where } s_0 \text{ is a new initial state not in } S_1 \text{ or } S_2; \\ g(s, x, y) = \begin{cases} f_1(s, x, y), & s \in S_1 \\ f_2(s, x, y), & s \in S_2 \\ (s_0, e), & s = s_0 \end{cases} \\ f_1(s, x, e) = f_1(s, e, x) = (s, x); f_2(s, x, e) = f_2(s, e, x) = (s, x); \end{split}$$

$$g(s_0, x, e) = f(s_0, e, x) = (s_0, x);$$

$$g(s_0, e, e) = \{(s'_0, e), (s''_0, e)\};$$

for every $x, y \in B$;

$$T = T_1 \cup T_2; \ C = C_1 \cup C_2.$$

That is, $(S,(B,\{\}),g)$ begins any computation by nondeterministically choosing to enter e ither with $g(s_0, e, e) = (s'_0, e)$ or $g(s_0, e, e) = (s''_0, e)$, and thereafter $(S,(B,\{\}),g)$ imitates either $(S_1,(B,\{\}),f_1)$ or $(S_2,(B,\{\}),f_2)$.

Let $L^{(3,2)}$ be a (3,2)-language which is recognized by nondeterministic (3,2)-semigroup automat on $(S, (B, \{\}), g)$. Then

 $w \in L^{(3,2)} \iff w \in Q^* \text{ and } \overline{\varphi}(s_0, (w, 1), (w, 2)) \in T \times C \iff w \text{ in}Q^* \text{ and } \overline{\varphi}(s_0, (w, 1), (w, 2)) = \overline{\varphi_1}(s'_0, (w, 1), (w, 2)) \in T_1 \times C_1 \\ \overline{\varphi}(s_0, (w, 1), (w, 2)) = \begin{cases} \overline{\varphi}(s'_0, (w, 1), (w, 2)) = \overline{\varphi_2}(s''_0, (w, 1), (w, 2)) \in T_2 \times C_2 \\ \overline{\varphi}(s''_0, (w, 1), (w, 2)) = \overline{\varphi_2}(s''_0, (w, 1), (w, 2)) \in T_2 \times C_2 \end{cases}$ 370

Hence $L^{(3,2)} = \{w \in Q^* | \overline{\varphi}(s_0, (w, 1), (w, 2)) = \overline{\varphi_1}(s'_0, (w, 1), (w, 2)) \in T_1 \times C_1 \text{ or } \overline{\varphi}(s_0, (w, 1), (w, 2)) = \overline{\varphi_2}(s''_0, (w, 1), (w, 2)) \in T_2 \times C_2\}$ = $\{w \in Q^* | \overline{\varphi_1}(s'_0, (w, 1), (w, 2)) \in T_1 \times C_1\} \cup \{w \in Q^* | \overline{\varphi_2}(s''_0, (w, 1), (w, 2)) \in T_2 \times C_2\}$ = $L_1^{(3,2)} \cup L_2^{(3,2)}$.

b) A complementation of a (3,2)-language $L^{(3,2)}$ is the (3,2)-language $\overline{L}^{(3,2)} = Q^* \setminus L^{(3,2)}$. We construct a nondeterministic (3,2)-semigroup automaton $(S, (B, \{\}), g)$ with initial state s_0 and terminal states $(S \times B) \setminus (T \times C)$.

 $w \in L^{(3,2)} \iff w \in Q^*$ and

$$\overline{\varphi}(s_0, (w, 1), (w, 2)) \in (S \times B) \backslash (T \times C) \Longleftrightarrow w \in Q^* \backslash L^{(3, 2)}.$$

So

$$\overline{L}^{(3,2)} = \{ w \in Q^* | \overline{\varphi}(s_0, (w, 1), (w, 2)) \notin T \times C \} = Q^* \setminus L^{(3,2)}.$$

c) We construct a nondeterministic (3,2)-semigroup automaton $(S, (B, \{\}), g)$ which recogniz es (3,2)-language $L_1^{(3,2)} \times L_2^{(3,2)}$ as follows: $S = S_1 \times S_2$; $B = B_1 \times B_2$; $C = C_1 \times C_2$; $T = T_1 \times T_2$;

$$\begin{split} S &= S_1 \times S_2; \ B = B_1 \times B_2; \ C = C_1 \times C_2; \ T = T_1 \times T_2; \\ g &= f_1 \times f_2 \text{ defined by } (f_1 \times f_2)(s_1, s_2), (x_1, y_1)(x_2, y_2)) = \\ &= (\pi_1(f_1(s_1, x_1, x_2)), \pi_1(f_2(s_2, y_1, y_2)), \pi_2(f_1(s_1, x_1, x_2)), \pi_2(f_2(s_2, y_1, y_2))), \\ \text{where } \pi_i, \ i = 1, 2 \text{ is a i-th projection of the argument.} \end{split}$$

Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-semigroup automat on $(S, (B, \{\}), g)$.

$$\begin{split} & w \in L^{(3,2)} \Longleftrightarrow w = (w',w'') \in Q_1^* \times Q_2^* \text{ and} \\ & \overline{\varphi}((s'_0,s''_0),(w',1),(w'',1),(w',2),(w'',2))) \in (T_1 \times T_2) \times (C_1 \times C_2) \\ & \Leftrightarrow (w',w'') \in Q_1^* \times Q_2^* \text{ and} \\ & \overline{\varphi}((s'_0,s''_0),(w',1),(w'',1),(w',2),(w'',2))) = (\pi_1(\overline{\varphi_1}(s'_0,(w',1),(w',2))), \\ & \pi_1(\overline{\varphi_2}(s''_0,(w'',1),(w'',2))), \pi_2(\overline{\varphi_1}(s'_0,(w',1),(w',2))), \pi_2(\overline{\varphi_2}(s''_0,(w'',1),(w'',2)))) \\ & \in (T_1 \times T_2) \times (C_1 \times C_2) \\ & \iff w' \in Q_1^* \text{ and } (\pi_1(\overline{\varphi_1}(s'_0,(w',1),(w',2))), \pi_2(\overline{\varphi_2}(s''_0,(w'',1),(w',2)))) \in T_1 \times C_1 \\ & w'' \in Q_2^* \text{ and } (\pi_1(\overline{\varphi_2}(s''_0,(w'',1),(w'',2))), \pi_2(\overline{\varphi_2}(s''_0,(w'',1),(w'',2)))) \in T_2 \times C_2 \\ & \iff w' \in Q_1^* \text{ and } \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1 \\ & w'' \in Q_2^* \text{ and } \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in T_2 \times C_2. \\ & \text{Hence } L^{(3,2)} = \{w \in Q_1^* \times Q_2^* | w = (w',w'') \text{ and } \\ & \overline{\varphi}((s'_0,s''_0),(w',1),(w'',1),(w',2),(w'',2))) \in (T_1 \times T_2) \times (C_1 \times C_2)\} = \\ & \{w \in Q_1^* \times Q_2^* | w = (w',w'') \text{ and } \overline{\varphi_1}(s'_0,(w',1),(w',2)) \times \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_1 \times C_2)\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in C_2 \times C_2\} = \\ & \{w' \in Q_1^* | \overline{\varphi_1}(s'_0,(w',1),(w',2)) \in T_1 \times C_1\} \times \{w'' \in Q_2^* | \overline{\varphi_2}(s''_0,(w'',1),(w'',2)) \in C_$$

d) We construct a nondeterministic (3,2)-automaton $(S, \{B, \{\}), g)$ with initial state s'_0 and sets of terminal states $T_2 \times C_2$ as follows:

$$\begin{split} S &= S_1 \cup S_2; \ f_1(s,e,e) = (s,e), \ \text{for all } s \in S_1, \\ f_2(s,e,e) &= (s,e), \ \text{for all } s \in S_2, \ f_1(s,x,e) = (s_0'',e), \ \text{for } (s,x) \in T_1 \times C_1, \\ f_1(s,x,e) &= f_1(s,e,x) = (s,x), \ \text{for } (s,x) \in (B \times S_1) \backslash (T_1 \times C_1), \\ f_2(s,x,e) &= f_2(s,e,x) = (s,x), \ \text{for } x \in B, \ s \in S_2, \end{split}$$

371

$$\begin{split} g(s,x,y) &= \left\{ \begin{array}{ll} f_1(s,x,y), & s\in S_1\\ f_2(s,x,y), & s\in S_2 \end{array} \right. \\ \text{In this way, } (S,(B,\{\}),g) \text{ operates by simulating } (S_1,(B,\{\}),f_1) \text{ for a while, and then} \end{split} \right. \end{split}$$

"jumping" nondeterministically from a terminal state of $(S_1, (B, \{\}), f_1)$ with $f_1(s, x, e) =$ (s_0'', e) , for $(s, x) \in T_1 \times C_1$, to the initial state of $(S_2, (B, \{\}), f_2)$. Thereafter, $(S, (B, \{\}), g)$ imitates $(S_2, (B, \{\}), f_2)$.

Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-automaton $(S, (B, \{\}), g).$

 $w \in L^{(3,2)} \iff w = w'w'' \in Q^*, |w'|, |w''| > 1 \text{ and } \overline{\varphi}(s'_0, (w, 1), (w, 2)) \in T_2 \times C_2$ $\iff w = w'w'' \in Q^* \text{ and } \overline{\varphi}(s'_0, w'w'') = \overline{\varphi}(\overline{\varphi}(s'_0, w'), w'') = \overline{\varphi}(\overline{\varphi_1}(s'_0, w'), w'').$ Let $\overline{\varphi_1}(s'_0, w') = (s, x) \in T_1 \times C_1$. By $f_1(s, x, e) = (s''_0, e)$, for $(s, x) \in T_1 \times C_1$, we go

in initial state s''_0 of (3,2)-semigroup automaton $(S_2, (B, \{\}), f_2)$. Then $\overline{\varphi}(s''_0, e, w'') = \overline{\varphi}(s''_0, w'') = \overline{\varphi_2}(s''_0, w'') \in T_2 \times C_2$.

Hence

 $L^{(3,2)} = \{ w \in Q^* | w = w'w'', \text{ for } |w'|, |w''| > 1 \text{ and} \\ \overline{\varphi}(s'_0, w'w'') = \overline{\varphi}(\overline{\varphi}(s''_0, w'), w'') = \overline{\varphi}(s''_0, e, w'') = \overline{\varphi_2}(s''_0, e, w'') \in T_2 \times C_2 \} \\ = L_1^{(3,2)} L_2^{(3,2)}.$

e) We construct a nondeterministic (3,2)-semigroup automaton $(S,(B,\{\}),g)$ with initial s tate s'_0 and sets of terminal states $T_1 \times C_1$ as follows:

 $S = S_1;$

 $g(s, x, e) = (s'_0, e), \text{ for } (s, x) \in T_1 \times C_1,$ $g(s, x, e) = g(s, e, x) = (s, x), \text{ for } (s, x) \in (S_1 \times B) \setminus (T_1 \times C_1),$

 $g(s, x, y) = f_1(s, x, y)$, for $(s \in S_1 \text{ and } x, y \in B$.

Let $L^{(3,2)}$ is a (3,2)-language which is recognized by nondeterministic (3,2)-automaton $(S, (B, \{\}), g).$

 $w \in L^{(3,2)} \iff w = w_1 w_2 \dots w_t \in Q^*, |w_1|, |w_2|, \dots, |w_t| > 1$ and $\overline{\varphi}(s'_0,(w,1),(w,2)) \in T_2 \times C_2 \iff w = w_1 w_2 \dots w_t \in Q^* \text{ and } \overline{\varphi}(s'_0,w_1 w_2 \dots w_t) =$ $\overline{\varphi}(\overline{\varphi}(s'_0, w_1), w_2 \dots w_t) = \overline{\varphi}(\overline{\varphi_1}(s'_0, w_1), w_2 \dots w_t) .$

Let $\overline{\varphi_1}(s'_0, w_1) = (s, x) \in T_1 \times C_1$. By $g(s, x, e) = (s'_0, e)$, for $(s, x) \in T_1 \times C_1$, we go again in initial state s'_0 of (3,2)-semigroup automaton $(S_1, (B, \}), f_1)$. Then

 $\overline{\varphi}(s'_0, e, w_2 \dots w_t) = \overline{\varphi}(s'_0, w_2 \dots w_t) = \overline{\varphi}(\overline{\varphi}(s'_0, w_2), w_3 \dots w_t) =$ $\overline{\varphi}(\overline{\varphi_1}(s'_0, w_2), w_3 \dots w_t).$

 $\overline{\varphi_1}(s'_0, w_2) \in T_1 \times C_1$, so with $g(s, x, e) = (s'_0, e)$, for $(s, x) \in T_1 \times C_1$, we go again in initial state s'_0 of (3,2)-semigroup automaton $(S_1, (B, \{ \}), f_1)$. This procedure continues for other (3,2)-subwords $w_2 \dots w_t$. Finally, we have $\overline{\varphi}(s'_0, w_t) = \overline{\varphi_1}(s'_0, w_t) \in T_1 \times C_1$. Hence $L^{(3,2)} = \{ w \in Q^* | w = w_1 w_2 \dots w_t, |w_1|, |w_2|, \dots, |w_t| > 1 \text{ and }$

 $\overline{\varphi}(s'_0, w_1 w_2 \dots w_t) = \overline{\varphi}(\overline{\varphi_1}(s'_0, w_1), w_2 \dots w_t) = \overline{\varphi}(s'_0, e, w_2 \dots w_t) = \overline{\varphi}(s'_0, w_2 \dots w_t) = \dots = \overline{\varphi}(s'_0, w_t) = \overline{\varphi_1}(s'_0, w_t) = \overline{\varphi_1}(s'_0, w_t) = \overline{\varphi_1}(s'_1, w_1) = \overline{\varphi_1}$

REFERENCES

[1] D. DIMOVSKI. Free Vector Valued Semigroups, Proc. Conf. "Algebra and Logic", Cetinje 1986, 55-62.

[2] D. DIMOVSKI, V. MANEVSKA. Vector Valued (n + k, n)-Formal Languages $(1 \le k \le n)$, 10th Congress of Yugoslav Mathematicians, Belgrade 1988, 153–159. 372

[3] K. TRENCEVSKI, D. DIMOVSKI. Complex commutative vector valued groups, Maced. Acad. Sci. and Arts, Skopje, 1992.

Violeta Manevska Faculty of Tehnical Sciences Bitola, Macedonia e-mail: violeta.manevska@uklo.edu.mk

Donco Dimovski Institute of Mathematics Faculty of Mathematics and Natural Sciences Skopje, Macedonia e-mail: donco@iunona.pmf.ukim.edu.mk

СВОЙСТВА НА (3,2)-ЕЗИЦИ, РАЗПОЗНАВАНИ ОТ (3,2)-ПОЛУГРУПОВИ АВТОМАТИ

Виолета Маневска, Донко Димовски

Целта на статията е да изследва свойствата на (3,2)-езици, които се разпознават от крайни (3,2)-полугрупови автомати.